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Abstract

The generalized first and second price auctions (GFP and GSP) are the primary means through
which ad auctions are conducted. Several theoretical results characterizing bidding behavior, ex-
pected revenue, and optimal reserve price under both mechanisms have been shown to hold under
assumptions of valuation distribution symmetry and monotone hazard rate (MHR). From the stand-
point of evolutionary game theory, the stability (or uniqueness) of these equilibria are not well un-
derstood. That is, assuming that agents are expected utility maximizing, these equilibria may be
unattainable using best response dynamics. In this paper, we seek to computationally analyze the
properties of these equilibria. Furthermore, we attempt to recover similar characterizations of bid-
ding behavior, expected revenue, and optimal reserve price without the additional assumptions of
symmetry and MHR. To that end, we introduce fast algorithms to compute conditional and joint dis-
tributions of order statistics which inevitably play a role in rank-based mechanisms such as the GSP
and GFP.
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1 Introduction

Characterizing the expected revenue of auctions from a computational standpoint has been of great
interest, especially in recent years. Many ordinary transactions such as those in e-commerce [7], in-
ternet service plans [14], advertisements, airplane tickets [12], hotel reservations [8] among others are
indeed designed with profit in mind. Auctioneers consider past transactions, demand, reliability, ne-
cessity, budget, and other characteristics indicative of one’s willingness to pay—their valuation—to
determine appropriate prices. Profit optimization is straightforward in markets in which individu-
als are price takers as the auctioneer need not consider strategic behavior amongst the participants.
Markets with either weak or no competition (monopolies) or a large number of participants (high-
demand) tend to give auctioneers more freedom in price-discrimination and profit maximization. In
other situations, however, the auctioneer has less market presence and participants exhibit strategic
behavior that non-trivially impacts expected revenue. This is particularly true in the ad auction set-
ting [4]. Much of recent research focuses on methods to characterize the expected revenue of these
non-truthful auctions through sample complexity guarantees [3], game-theoretic solution concepts
[6] [10], approximation algorithms [11].

The design and analysis of ad auctions, also known as sponsored search, is a particularly hot
area of research. In these auctions, companies pay advertisers to display their advertisements given
a particular search query. That is, every time a user queries, say Google, a micro-auction between
companies interested in targeting the user and similar demographics is held. This auction determines
not only which ads are shown but also how attractive of a location on the search page they are placed.
The auction’s participants then pay some fee based on what they are allocated, whether the user
clicked on the ad, and if the user purchased anything. Determining this payment scheme has been
of significant computational and economic interest. Historically, Generalized Second Price auctions
(GSPs), in which the auction’s winners pay the next highest bid, have been used, most notably by
Yahoo! and Google. In the past, Yahoo! switched from Generalized First Price (GFP) to GSPs, and
by the end of 2019, Google switched from GSP to the GFP, in which participants pay their own bid.
As most of the theory regarding sponsored search auctions has revolved around GSPs, GFPs are
not as well understood and bidder behavior is often unpredictable [4]. Nonetheless, several results
characterizing Nash equilibria, expected revenue, and optimal reserve prices in both GFP and GSP,
from both the ex-ante and full-information settings, have been shown in recent years [6] [10] [9]. In
addition to using standard optimization and auction-theoretic tools, such as Myerson’s theorem and
revenue equivalence, many of these derivations call upon distributions of order statistics.

To that end, order statistics—ordered random variables—naturally arise from the rank-based allo-
cation rules of auctions, GFPs included. The expected utility of a bidder and the expected revenue of
the GSP/GFP can be expressed as a function of order statistics and their distributions. For instance,
consider the expected revenue of the GFP with no reserve and m slots. Let there be n bidders with
bids bi ∼ Fbi for all i ∈ [n] such that bi ⊥ bj. Define b(i) to be the ith largest value in b = (b1, . . . , bn).
The expected revenue can be expressed as the sum of the expected values of the top m order statistics:

Eb(Revn,GFP) = Eb

(
m

∑
i=1

b(i)

)
=

m

∑
i=1

Eb(i)

(
b(i)
)

(1)

At first glance, this expression seem relatively simple to compute. However, there are two issues



which makes characterizing the expected revenue more difficult. The first is that we have direct ac-
cess to the bidder behavior. The bidding distributions Fbi are actually functions of some underlying
valuation distribution and the mechanism type and parameters. The second issue is that the dis-
tribution of order statistics of non-identically distributed random variables is difficult to compute.
In particular, while the Bapat-Beg theorem [1] provides an explicit expression for the joint cumula-
tive distribution functions of order statistics, however, is costly to evaluate. We require alternative
methods to quickly compute the quantity Eb(i)

(
b(i)
)

as well as more general expectations of func-
tions of multiple order statistics as we will need to for GSP. In the i.i.d. case—an assumption of most
of the aforementioned results regarding the Nash equilibria, expected revenue, and optimal reserve
price—there is a simple expression for single order statistic distributions. More concretely, consider

computing the distribution of the ith order statistic X(i) of the random variables X1, . . . , Xn
i.i.d.∼ F. The

order statistic cumulative distribution function (cdf) denoted by FX(i) requires a summation over a set
of size O(n) and the pdf is easy to compute:

FX(i)(x) =
n

∑
j=i

(
n
j

)
F(x)j(1− F(x))n−j (2)

fX(i)(x) = n
(

n− 1
i− 1

)
F(x)i−1(1− F(x))n−i f (x) (3)

We can then compute the expected value as E(X(i)) =
∫ ∞
−∞ x fX(i)dx. If the Xi’s are non-negative which

they are in the case of auction bids, E(X(i)) =
∫ ∞

0 dF̃X(i)(x), where F̃ denotes the complementary
cdf. Approximating these quantities computationally is not too difficult as fX(i) and FX(i) are simple.
Unsurprisingly, the expression becomes more complicated when dropping the identically distributed
assumption. Letting each Xi ∼ Fi denote n independent but not necessarily identically distributed
random variables, then we have:

FX(i)(x) =
n

∑
j=i

∑
S∈2{1,...,n},|S|=j

[
∏
s∈S

Fs(x) ∏
s′∈{1,...,n}\S

(1− Fs′(x))

]
. (4)

The number of terms in this expression is exponential with respect to n. The pdf fX(i) is similarly
difficult to compute. Furthermore, we have only computed the distribution of a single order statis-
tic under the independence assumption; computing the joint order statistics distribution without the
independence assumption is even more difficult. For our purposes, we will always assume indepen-
dence, though there are certainly scenarios in which this does not hold, such as when there is shared
information amongst some agents or when agents bid in order. However, in some of the mechanisms
we consider in this paper, the expected revenue is a function of the joint distribution. A similar anal-
ysis can be made for computing the expected utility of a bidder participating in one of these auctions
with fixed competitor bidding distributions. Some of our primary contributions in this paper are an
efficient algorithms to compute joint order statistic distributions, expectations, and conditional expec-
tations which will allow for both analysis and optimization of several single-parameter auctions.

One particular application allows us to simulate best response dynamics (BRD) over the (dis-
cretized) space of bidder behavior without having to simulate individual auctions. Interpreting learn-
ing expected utility maximizing behavior as a dynamical system over bidding strategies induced



by best response dynamics, we can interpret Nash/Bayes-Nash equilibria as long-term behavior of
the agents. As we seek to determine the stability of the equilibria as predicted in theory, the addi-
tional noise in Monte Carlo estimation—which is the primary means in which several papers have
attempted to learn equilibria in auctions [15] [16]—complicates locating unstable equilibria. This
necessitates exact computations of expected utility, which we have previously mentioned may be
calculated as a function of distribution of order statistics.

The paper is outlined as follows: In Section 2, we introduce relevant notation and terminology. In
Section 3, we formally define the two auctions that we will be analyzing or optimizing. In Section 4,
we solve the problem of computing joint or conditional order statistic distributions through dynamic
programming. In Sections 5, we apply our algorithm to each of the auctions defined in Section 3. We
conclude Section 6, giving possible extensions for the work done in this paper.



2 Preliminaries

2.1 Notation

While we will be restricting our attention to the GSP and GFP for most of the paper, we will give
a more general exposition of notation as our methodology works for more general rank based auc-
tions. Recall that our objective is to either compute or optimize the expected revenue of a single-
parameter auction Aθ with n bidders with respect to the auction parameters θ. Each of these bid-
ders have independent valuation distributions F1, . . . , Fn. Let vi ∼ Fi denote the valuation of bid-
der i. The auction proceeds as follows: there are m goods to be auctioned off and each bidder i
submits a bid bi(vi,Aθ) = bi ∈ R+. Depending on agent i’s bid bi, all other agents’ bids b−i,
and the auction’s allocation rule, the ith agent will be assigned one of the goods and receives util-
ity µi(bi, vi, b−i,A) = vixi(bi, b−i,Aθ) − pi(bi, b−i,Aθ). Here, vixi(bi, b−i,Aθ) is one’s valuation vi
multiplied by their allocation and pi(bi, b−i,Aθ) is the payment of bidder i, which is some func-
tion of their own bid, all other agents’ bids, and the auction parameters. The expected revenue is
then a function of several objects: the payments p, bid distributions Fb1|Aθ

, . . . , Fbn|Aθ
, and the auction

Aθ . These bid distributions Fbi are obtained as a transformation from valuation space to bid space
bi = bi(vi,Aθ) ∼ Fbi |Aθ

through the bid function. With this, we have the following two expression for
the expected revenue:

Ev(Revn,Aθ
) = Ev

(
n

∑
i=1

pi(bi(vi), b−i(v−i),Aθ)

)
=

n

∑
i=1

Eb|Aθ
(pi(bi, b−i,Aθ)) (5)

Intuitively, the revenue of an auction Aθ and some vector of bids b is exactly the sum of the pay-
ments of each of the bidders. The expression seems relatively straightforward to evaluate, and indeed,
if we are given access to the bidding distributions, the expected revenue can either be computed di-
rectly or estimated via Monte Carlo simulation. Now assuming that we can compute the expected
revenue of a particular auction, we may be able to optimize some parameters of an auction, such as
reserve or posted prices. At first glance, this seems to be a calculus problem of solving for the zeros
of the derivative of the expected revenue over the set of auction parameters. In the i.i.d. case, this
does not appear to be too difficult as there exist simple expressions to compute joint order statistic
distributions [5]. However, we have overlooked a crucial hurdle: the bidding distributions Fb|Aθ

are
in general not given, and moreover, are not trivial to characterize even in the i.i.d. setting.

2.2 Solution Concepts

The bidding functions bi can be arbitrary mappings from a valuation to some real value. We will
assume that these bidding functions are rational where each agent i with valuation vi will bid bi in
order to maximize their expected utility:

bi = bi(vi,Aθ) = argmaxbEb−i |Aθ

(
m

∑
j=1

µi(bi, b−i,A)
)

(6)

As mentioned, these bidding functions may not necessarily be uniquely determined. We can interpret
the auction as a game, where there are n players with action/strategy space as the set of all possible



maps from valuations to bids and reward equal to expected utility as in Equation (6). Now consider
this game’s set of Nash equilibria—vectors of strategies such that each agent cannot improve their ex-
pected utility by deviating from their current strategy. However, we are guaranteed neither existence
or uniqueness of Nash equilibria which spells trouble for our computation of expected revenue in
Equation (5). However, not all is lost. Nash equilibrium is not the only solution concept or character-
ization of rational agent behavior. For example, Bayes-Nash equilibria generalizes the notion of Nash
equilibria by defining a probability distribution over actions such that one modifying these probabil-
ities cannot improve one’s expected utility. Similarly, from the lens of evolutionary game theory, one
can define how these agents learn their bidding distribution as some deterministic function f . These
functions define a dynamical system (induce a response graph if discrete) over the set of all possible
vectors of strategies. One can then define a function that maps from the dynamical system (response
graph) to a single, representative vector of strategies. For example, [13] defines a Markov chain over
and within the set of stable limit cycles and defines the representative vector as the stationary distri-
bution of this Markov chain. Similarly, [17] applies the same procedure except considering only the
recent history of best-response vectors. In this paper, we will run BRD from random initializations for
a set number of trials and average the last few entries to determine long-term bidder behavior. This
allows our reserve price optimization to apply more generally as the problem of bidding behavior de-
termination can be treated as a separate problem. While there are certainly many other useful solution
concepts that allow us to uniquely determine the bid distributions, we will only consider fixed time
BRD and fixed time Boltzmann weighted BRD where action probabilities are weighted exponentially
with respect to their expected utility.

2.3 Learning Bid Functions

As we have noted, the auction can be seen as a game with n agents, seeking to find an optimal
bidding function over the set of valuations. Constructing agents to learn these mappings is difficult
as the support of each Fvi may be unbounded or a continuum. There are several theoretical results that
characterize the existence of the GFP and GSP’s symmetric Bayes-Nash equilibrium (SBNE) with the
additional assumptions of i.i.d. valuations and monotone hazard rate valuation distributions. Letting
bi, f , and F denote the universal bidding function and valuation distribution and cumulative density
function, then the following two bidding behaviors constitute a symmetric BNE in the GSP and GFP
respectively:

(Gomes, Sweeney 2014): If a quasi-efficient, symmetric BNE exists in GSP, then:

bi(v) = v−
m

∑
s=2

Iv≥pγs(v)
∫ v

0
(v−max(b(x), p)) Fn−s−1(x) f (x)dx (7)

where γs(v) =
(n−2

s−1)(s− 1)(1− F(v))s−2αs

∑s
t=1 (

n−2
t−1)(1− F(v))t−1Fn−t−1(v)αt

(8)

(Han, Liu 2015): If a quasi-efficient, symmetric BNE exists in GFP, then:

bi(v) = v−
∑m

s=1(αs − αs+1)
∫ v

p F(s)(t)dt

∑m
s=1(αs − αs+1)F(s)(v)

(9)



In terms of the dynamical system induced by best response dynamics, it is unknown whether or
not these equilibria are stable. That is, these BNE may be not necessarily be attainable from bidders
seeking to maximize their expected utility. To that end, one of our major goals is to determine the
stability of these equilibria computationally. One of the hurdles is that the expected utility function
seems difficult to calculate. However, two useful observations come to our rescue:

1. As seen in Equation (5), one need not actually consider the mappings from valuations to bids in
order to compute the expected revenue of an auction. Instead, we only consider the distribution
of bids induced by the bidding function and valuation distributions. This implies that in order
for the ith agent to learn a bidding function, they need not consider the bidding function of
other bidders, but just their bid distributions.

2. The expression in Equation (6) is similar to Equation (5). In the former, we compute the expected
value over all bids of some function dependent on these bids. In the latter, we compute the
expected value over all but the ith bid of some other function dependent on these bids. We
can use compute the distributions of the relevant order statistics via dynamic programming to
determine the expected utility quickly.

With these observations in mind, we define a simple, discretized one-step optimization function
that obtains both the bidding function and bid distribution for a particular bidder, fixing all other
agents’ bid distributions. More specifically, we first discretize the valuation distribution Fvi (if it is
not already discrete) into probability mass functions over t points on the real line, r1 < . . . < rt. The
mass of the discretized valuation distribution at each point rs is proportional to Fvi(rs)− Fvi(rs−1) for
s = 1, . . . , t, with r0 = −∞. Then, at each point vi = rs, we compute the expected utility of bidding
bi = rs′ to be µ̂i(rs′ ; rs,Aθ). We then set the bidding function at point v ∈ (rs−1, rs] to be the bid that
maximizes µ̂i(·, rs) and update the bid distribution accordingly.

Algorithm 1 Discretized One-Step Bidding Function Learner
Require: Aθ , Fvi , Fb−i , (r1, . . . , rt), µi

Ensure: Approximate bid function and bid distribution, b̃i(·) and F̃bi(·) respectively
1: Initialize F̂bi(·) = 0
2: for s← 1 to t do
3: for s′ ← 1 to t do
4: Set µ̂i(rs′ ; rs,Aθ) = Eb−i |Aθ

(
∑m

j=1 µi(rs′ , b−i,A; rs)
)

5: end for
6: Set b̃i(v) = argmaxbµ̂i(b; rs,Aθ) for all v ∈ (rs−1, rs]

7: Set F̃bi |Aθ
(rs)

+
= Fvi(rs)− Fvi(rs−1)

8: end for
9: Set b̃i(v) = argmaxbµ̂i(b, rt,Aθ) for all v ∈ (rt, ∞)

10: Set F̃bi |Aθ
(rt)

+
= 1− Fvi(rt)

11: return b̃i(·), F̃bi |Aθ
(·)

This can be seen as learning a best response to the current set of bidding distributions. We run
this procedure for each agent (in some randomized fashion to avoid possible cycles), updating the



bidding distributions and functions until the agents have reached equilibrium. There is one primary
advantage and one disadvantage of programming agents in this fashion to compute bidding functions
rather than using one of the solution concepts as mentioned last section. The advantage is that we can
start from any initialization to show the stability of a particular BNE (attraction of a particular fixed
point of a dynamical system). With this, we can ’jump-start’ the mixing process by saving previous
bidding functions and modify them slightly each time the auction parameters or bid distributions
are updated. Hopefully, this initialization will allow the agents to converge more quickly. However,
the main disadvantage is that the bidding behavior over all agents are not guaranteed to converge as
there may be bidder behavior cycling. We will simulate best response dynamics in our experiments
sequential, simultaneous, and weighted learning updates. We will verify in which auctions these
agents settle into an equilibrium and those in which they do not.

2.4 Auctions

Having obtained the empirical bidding distributions, we are almost fully equipped to compute or op-
timize the expected revenue of any auction. The question now is which auctions we will be analyzing
or optimizing. Auctions are defined by an allocation and payment scheme which are defined by key
parameters such as posted or reserve prices, the number of goods m, or a tie-breaking index. Here,
we describe the three auctions of interest—the GFP, GSP, and Myerson’s optimal auction—and then
compare the expected revenue of each of these auctions.

2.4.1 Generalized First and Second Price Auctions

GSPs, along with generalized first price mechanisms (GFP), are the prevalent mechanisms for spon-
sored search auctions. In the sponsored search setting, there are m items—slots—with click through
rates αi,1 ≥ . . . ≥ αi,m for each bidder i. Slots are allocated in decreasing order of bids. Bidder i obtain
payoff αi,jvi and pays bi if allocated the jth slot. The expected revenue of the GFP without reserve is
then the expected value of the sum of the m largest bids. Similarly, in the GSP, the expected revenue
is the sum of the second through m + 1st largest bids. In practice, both auctions are defined with a
reserve price π. In GFPs and GSPs with reserve, the reserve price π enforces that bidders must bid at
least π to be considered at all for slot allocation. In the GSP, the winners then pay the maximum of the
reserve price and the next highest bid. These reserve prices serve to both avoid the risk of receiving
unusually low revenue from the auction winners and to incentivize bidders not to shade their bids
too much. The expected revenue of these auctions is then the sum of the expected values of the m
largest bids subject to the reserve price: ∑m

i=1 E
(

b(i)1b(i)≥π

)
. These reserve prices can be used to opti-

mize the expected revenue of an auction, such as in Myerson’s revenue maximizing auction. Under
the theoretical SBNE as described earlier, the expected revenue of the GFP and GSP can be computed
explicitly under a given reserve price π:

(Gomes, Sweeney 2014): Given reserve price π, the expected revenue of the GSP under symmetric
equilibrium is given by:

Eb (Revenue(b) | GSP(π)) = n
m

∑
s=1

∫ ∞

π
αs

(
n− 1
s− 1

)
(1− F(t))s−1F(t)n−s

(
t− 1− F(t)

f (t)

)
dF(t)



(Han, Liu 2015): Let F(s)|n−1(x) denote the CDF of the sth order statistic of n − 1 i.i.d. random
variables drawn from F. Given reserve price π, the expected revenue of the GFP under symmetric
equilibrium is given by:

Eb (Revenue(b) | GFP(π)) = n
m

∑
s=1

(αs − αs+1)

[∫ ∞

π
t(1− F(t))dF(s)|n−1(t) + π(1− F(π))F(s)|n−1(π)

]
Interestingly enough, the optimal reserve price in both auctions is the same under these SBNE:

π∗ =
1− F(π∗)

f (π)
(10)

Where f , F, and α1, . . . , αm denote the universal valuation distribution, cumulative distribution func-
tions, and click through rates respectively. It is currently unknown how these results generalize to the
asymmetric setting (valuations or CTRs) or without the assumption of MHR. Fortunately, there exists
another auction to which we can compare expected revenue in this more general setting.

2.4.2 Myerson’s Revenue Maximizing Auction

Myerson’s revenue maximizing auction is a truthful auction in which players are allocated in de-

creasing order of non-negative virtual valuations φi where φi(vi) = vi −
1−Fvi (vi)

fvi (vi)
. Myerson showed

that the expected revenue is equal to the expected virtual surplus, which is the sum of all winners’
virtual valuations. Hence, with appropriate bidder behavior, this allocation rule is expected revenue
maximizing. The question now is how to enforce ’appropriate bidder behavior’, as in general, the
auctioneer only sees bids rather than valuations or virtual valuations. In a separate result, Myerson
also provides an expression to compute the payment formula under any particular monotone allo-
cation rule such that the resultant auction is truthful. In the sponsored search setting, the payment
for the winner of the kth item, say bidder i and j < m, comes out to be ∑m

j=k φ−1
i (φj+1)(αj+1 − αj),

where φj+1 is the j + 1st largest non-negative virtual valuations. Similarly, the winner of the mth item,
say bidder i, then pays the reserve πi = φ−1

i (0). The virtual valuation order allocation rule and this
payment scheme make this auction revenue maximizing over the set of all truthful auctions. One of
the additional nice properties of the auction, since it is truthful, is that we have equivalence between
expected revenue and expected virtual surplus. This allows us to compute the expected revenue as
the sum of the m largest expected virtual valuations subject to non-negativity, which themselves can
be treated as random variables. Using the same algorithm to compute order statistic distributions as
in the GFP, we can back out the expected virtual surplus of Myerson’s auction.

Despite the desirable properties of Myerson’s auction—DSIC and expected revneue maximizing
over the set of truthful auctions—it is rarely used in practice. The complex allocation and payment
schemes involve not only one’s own bid but also the virtual valuations of other bidders. We will only
use this auction as a baseline to gauge the effectiveness of the GFP and GSP in our experiments. Now,
we are ready to introduce the main auctions of interest and the algorithm through which we shall
analyze them.



3 Problem Statement

As we have mentioned previously, the generalized first and second price auctions are the primary
mechanisms of interest. We will be maximizing the expected revenue with respect to the reserve price
π for which the bidders must meet in order to be considered in the auction. In particular, we will be
comparing expected revenue from the non-truthful GFP and GSP with empirically optimal reserve
price with that of Myerson’s auction, which is provably expected revenue maximizing among the
set of all truthful auctions. Our overall optimization procedure can be partitioned into four stages:
we randomly initialize some reserve price θ = π and obtain the bidder distributions according to
our bidding function learning algorithm. Then, we compute the expected revenue associated with
this particular reserve price and corresponding bid distributions. We then obtain a proposal param-
eterization θt+1 ∈ Θ and repeat until some stopping condition and return the optimal reserve price
π. We repeat these last three steps for different initializations to escape local optima. More gener-
ally, this procedure works for any auction except replacing the reserve price π with a different set of
parameters:

Algorithm 2 General Auction Parameter Optimization Procedure
Require: A, (Fvi)i∈[n], (αi,j)i∈[n],j∈[m], Θ
Ensure: θ∗, the revenue maximizing parameterization and R∗, the associated expected revenue

1: for randomly initialized θ0 until termination do
2: for proposal θt until termination condition do
3: Fbt ← Fb|Aθt

4: Set RAθt = Ebt (Rev(b;Aθt))
5: if RAθt ≥ R∗ then
6: Set R∗ ← RAθt

7: Set θ∗ ← θt

8: end if
9: θt+1 ← ProposalFunction(θ0:t, R0:t)

10: end for
11: end for
12: return θ∗ and R∗.

It is worth noting that step (4) in the algorithm above computes the resultant bid distributions cor-
responding to the behavior simulated by our agents through Algorithm (1). These distributions need
not be obtained through simulated agents and instead can be replaced with the behavior predicted by
other solution concepts as mentioned previously. We have also already explained the merits of using
our simulated agents. Similarly, the parameter updating step in line (10) we choose to be the expected
improvement maximizing parameterization assuming that expected revenue is a Gaussian Process.
Any general purpose local search proposals should suffice though. After applying this procedure, we
will be ready to answer the following key questions: How do the expected revenues in the optimized
GFP and GSP obtained via BRD compare to those as predicted by theory? Similarly, can we character-
ize changes in bidder behavior with respect to the reserve price, number of bidders, number of slots,
or valuation distributions? Most importantly, can we cover the optimal reserve price?



4 Algorithms

The only step in Algorithm (2) we have yet to define how to do is step step 5, where we obtain the
expected revenue of the auction with parameter θt; namely RAθt = Ebt (Rev(b;Aθt)). For the gener-
alized first (second) price auction with m slots and reserve price π, the expected revenue is precisely
the expected sum of the m largest bids above π (sum of the maximum of π and the 2nd through
m + 1st largest bids above π). Using linearity of expectations, we obtain the following formula for the
expected revenue of the GFP with reserve price π and bid distributions Fbt :

Ebt(Revn,GFP(π)) =
m

∑
i=1

Ebt
(i)

(
bt
(i)1bt

(i)≥π

)
(11)

There are two main differences between this auction and that as defined in the introduction in Equa-
tion (1). In the latter, there is no reserve price, so our expectation is over all b(i) rather than just

bt
(i)1bt

(i)≥π. Assuming that b(i)
d
= bt

(i), then the GFP with no reserve performs better. Of course, this
is not the case, as the reserve incentivizes bidders to shade their valuations less. Exactly how much
better we will be able to see empirically. One major hurdle remains as computing the expectation of a
function of an order statistic of non-i.i.d. random variables is non-trivial. We run into a similar prob-
lem when computing the expected revenue of Myerson’s auction when treating the virtual valuations
themselves as random variables.

Eb
(
RevMyerson

)
= Eφ1,...,φn

(
m

∑
i=1

φ(i)1φ(i)≥0

)
(12)

The distribution of the φi’s can be backed out using fi and Fi’s and similarly, the expectation of of
φ(i)1φ(i)≥0 requires obtaining the distribution of individual order statistics as in the GFP. The expected
revenue in the GSP is even more complex as the payments are functions of multiple order statistics:

Ebt(Revn,GSP,π) =
m

∑
i=1

Ebt
(i),b

t
(i+1)

(
max(bt

(i+1), π)1bt
(i)≥π

)
(13)

In addition to computing the expected revenue, the expected utility of a bidder requires com-
puting joint order statistic distributions of independent but non-necessarily identically distributed
random variables:

Eb−i |Aθ
(µi(bi; vi,Aθ)) = Eb−i |Aθ

(vixi(bi, b−i,Aθ))−Eb−i |Aθ
(pi(bi, b−i,Aθ)) (14)

=
m

∑
j=1

viP(win slot j with bid b | Fb−i)αj −Eb−i |Aθ
(pi(bi, b−i,Aθ)) (15)

In GFP, the expected payment is P(win any item)bi. In GSP, the expression is more complicated:

Eb−i |GSP(π) (pi(bi, b−i,Aθ)) =
m

∑
j=1

P(win slot j with bid b)Eb−i |GSP(π)

(
max(π, b(j+1)) | b(j+1) ≤ b

)
(16)



To that end, we will need algorithms that can compute the expected revenues, payoffs, and pay-
ments in the GFP, GSP, and Myerson settings quickly. We first describe an algorithm that obtains
joint cumulative distribution functions of order statistics of non-identically distributed random vari-
ables. In particular, let Xi ∼ Fi for all i ∈ [n] be a collection of independent random variables.
We wish to compute the joint cumulative distribution function of the order statistics indexed by
C = (c1, . . . , cd) ∈Nd at a point x = (x1, . . . , xd) ∈ Rd:

FXC (x) = P

 d⋂
j=1

{X(cj) ≤ xj}

 (17)

Here, we assume both C and x are strictly increasing; otherwise some indices may be redundant
i.e. P(X(1) < 1, X(2) < 0) = P(X(2) < 0). The joint cumulative distribution function will be useful for
computing the expected utility of a particular bidder. Computing the expected revenue of Myerson’s
optimal auction also requires a similar expression, though requires some modification to account for
virtual valuations. To compute the expected revenue of GFP and Myerson’s auction, we will need
the expected value of individual order statistics. Fortunately, the expected value of a non-negative
random variable can be expressed in terms of the complementary cumulative distribution function,
which we are going to compute anyways. That is, for non-negative random variable X with F:

E(X) =
∫ ∞

0
(1− F(x))dx (18)

4.1 Related Work

4.1.1 Bapat-Beg Theorem

The Bapat-Beg theorem [1] gives an explicit formula for this quantity, which involves the computation
of matrix permanents. Letting I ≡ {i : 0 = i0 ≤ i1 ≤ . . . ≤ id ≤ id+1 = n, ij ≥ cj ∀j = 1, . . . , d}, we
have

FXC (x) = ∑
i∈I

Peri1,...,id(X1, . . . , Xd)

∏d+1
j=1 (ij − ij−1)!

(19)

Here, Peri1,...,id(X1, . . . , Xd) is the permanent of the block matrix P where Pi,j = Fi(Xt)− Fi(Xt−1) =
pi,t for i, j = 1, . . . , n and t = mins({is : is ≥ j}). While this seems to solve our problem, the I grows
at rate O(nd) and the fastest known procedure to compute the matrix permanent is O(n2n−1). Even
for small n and d, this procedure becomes intractable quickly.

4.1.2 Boncelet Jr. Dynamic Programming Algorithm

An improvement to this result using dynamic programming was posed in [2]. This method converts
(17) into an equivalent combinatorial problem as follows.

1. We begin by defining x0 = −∞ and partition the region (−∞, xd] into n intervals—which we
will henceforth refer to as bins:

(−∞, xd] = ∪d
j=1(xj−1, xj] = ∪d

j=1 Ij = I1:d (20)



2. Define Ci
j = ∑i

k=1 1Xk∈Ij to be the number of the first i random variables X1, . . . , Xi—which we
refer to as balls—that land in bin j. Let Ci = (Ci

1, . . . , Ci
d) be the ball configurations of the first i

balls respectively.

3. Define Dj ≡ {∑
j
i=1 Cn

i ≥ cj} ≡ {Cn
1:j ≥ cj} to be the event that there are at least cj balls in the

first j bins. We can now rewrite Equation (17) as:

FXC (x) = P

 d⋂
j=1

{X(cj) ≤ xj}

 = P

 d⋂
j=1

{Cn
1:j ≥ cj}

 = P

 d⋂
j=1

Dj

 = P(D1:d) (21)

4. We define n + 1 tables T0, . . . , Tn where Ti ∈ [n]d such that Ti(C) is the probability that Ci =
C. With T0 to be a table of 0’s, Boncelet’s algorithm then employs the following recurrence
relationship:

Ti(C) = P (Xi > xd) Ti−1(C) + ∑
{j:Cj>0}

P(xj−1 < Xi ≤ xj)Ti−1(C− 1j) (22)

5. The probability in Equation (21) can then be obtained from table Tn by summing over the entries
C that satisfy D1:d.

As there are n iterations, updating O(nd) table entries, where each update requires a summation
over O(d) elements, this algorithm has a time complexity of O(dnd+1) and a space complexity of
O(nd+1), though the space complexity can be improved by a factor of n by discarding previous tables
which we are no longer needed. Furthermore, this algorithm has an additional advantage over using
the Bapat-Beg theorem as the table entries themselves are meaningful. For example, we can run the
Spill-Over algorithm when n < d. Note that this makes the original joint distribution computation
impossible, as we cannot possibly satisfy D1:d with only n < d variables. However, applying the
recurrence relation with C = (1, . . . , d) and x = (x1, . . . , xd), the table T represents the joint probability
mass function of these n variables over the d intervals I1, . . . , Id defined by x. Then, Tn(C) represents
the probability that there are Cj random variables that realized value in Ij. Letting d be very large,
we can approximate the joint cumulative density function of these points. That being said, while
algorithm is much faster than applying Bapat-Beg’s theorem, the space complexity of O(nd) makes
the algorithm difficult to use in practice. Our algorithm, which we dub the Spill-Over algorithm,
builds off Boncelet Jr.’s dynamic program to reduce its time and space complexities.

4.2 Spill-Over Algorithm

As just mentioned, the Spill-Over algorithm is a variant of Boncelet Jr.’s algorithm. In particular, it is
a compressed version of Boncelet Jr.’s algorithm. Previously, we defined ball count and configuration
variables Ci

j and Ci respectively which denoted the exact number of balls in a particular bin. In this
algorithm, we instead construct lower bounds Bi

j and Bi on the number of balls in the bins. Note that

the event Dj still holds as long as ∑
j
i=1 Bn

i ≥ cj. To more precisely show how much this algorithm
improves upon Boncelet Jr.’s algorithm, we first define ∆j = cj − cj−1 for c0 = 0 for all j = 1, . . . , d



and ∆ = (∆1, . . . , ∆j). We then construct tables T0, . . . , Tn where Ti ∈
⊗d

j=1[∆j]. At a high level, the
algorithm updates these tables using a similar recurrence relationship as in Boncelet Jr.’s algorithm
with the stipulation that once the number of balls in the jth bin reaches ∆j, it is considered to be ’full’
and any additional balls that land in this bin then ’spill-over’ into the next open bin. The intuition
for this spill-over step is exactly that we care only that Dj is satisfied, rather than the exact number of
balls in the first j bins. More specifically, we the algorithm works as follows:

1. Suppose the jth through kth bins are full and the k + 1st bin is not from throwing the first i balls.
Then, if the i + 1st ball is thrown in any of bins j through k (or k + 1), then it will land in bin
k + 1. That is, if the i + 1st ball lands anywhere in bins j through k + 1, then Bi+1

k+1 = Bi
k+1 + 1

and Bi+1
k′ = Bi

k′ for all k′ 6= k.

2. Define the ’spill-over’ function ψ : Nd ×Nd ×N→N:

ψ(B, ∆, j) = min(j, {i : Bk = ∆k ∀k s.t i ≤ k ≤ j}) (23)

For our purposes, ψ(B, ∆, j) is the smallest index i such that a ball thrown into the ith bin results
in the ball landing in the jth bin.

3. Suppose the jth through dth bins are full after the first i ball tosses. Then, if the i + 1st ball is
thrown in any of these bins, then it will ’spill-out’ of all bins and will be treated as if it did not
fall into any of the bins. That is, if the i + 1st ball lands anywhere in bins j through d, then
Bi+1 = Bi.

4. We define the ’spill-out’ function θ : Nd ×Nd →N:

θ(B, ∆) = min(d, {i : Bk = ∆k ∀k s.t. i < k ≤ d}) (24)

θ(B, ∆) represents the smallest index i such that all bins indexed larger than i are full. That is,
any balls thrown into bins i + 1 through d spill-out and are ignored. With this defined, the main
recurrence relation (which we will further modify) is given by

Ti(B) = P(Xi > xθ(B,∆))Ti−1(B) +
d

∑
j=1

j

∑
k=φ(B,∆,j)

1Bj>0P(Xi ∈ Ik)Ti−1(B− 1j) (25)



4.3 Spill-Over Algorithm, Complexity Analysis, Proof

Algorithm 3 Joint CDF of selected order statistics C for independent r.v.’s (Spill-Over)

Require: d ∈N, n ∈N, pi ∈ [0, 1]d+1 for i ∈ [n], C ∈ {(c1, . . . , cd) : 1 ≤ c1 < . . . < cd ≤ n}
Ensure: T(∆) = P(D1:d)

1: T0(0) = 1
2: ∆ = (c1, c2 − c1, . . . , cd − cd−1)
3: for i← 1 to n do
4: for B in decreasing order do
5: Ti(B) = P(Xi > xθ(B,∆))Ti−1(B) + ∑d

j=1 ∑
j
k=φ(B,∆,j) 1Bj>0P(Xi ∈ Ik)Ti−1(B− 1j)

6: end for
7: end for
8: return Tn(∆) = P(D1:d)

Since there are a total of n tables (which are disposable) each containing O(∏d
j=1 ∆j) table entries with

each update to an entry formula involving the sum over O(d2) terms, the space and time complexity
of this algorithm are O(∏d

j=1 ∆j) and O(nd2 ∏d
j=1 ∆j) respectively. This is worst case a factor of O(dd)

more efficient; a significant improvement over Boncelet Jr.’s original algorithm, though is still expo-
nential in d. In the sponsored search setting, d will represent the granularity at which we discretize
continuous distributions and n is the number of bidders (which we will modify this algorithm later
so as to only need to track the k largest bidders to yield n = k). The ∆j’s for our purposes will be equal
to 1, as the order statistics of interest are the top k, which means cj − cj−1 = ∆j = 1.

4.4 Proof: Independent Case

Theorem 1. For all B such that 0 ≤ B ≤ ∆, we have the following equality at the ith iteration:

P(Ai,B) = P(Xi > xθ(B,∆))P(Ai−1,B) +
d

∑
j=1

j

∑
k=φ(B,∆,j)

1Bj>0P(Xi ∈ Ik)P(Ai−1,B−1j) (26)

Proof. Recall that before the ith iteration of the algorithm, only i − 1 balls have been thrown thus
far, so Ci

1:j and Bi
1:j represent the number of and lower bound on the first i balls thrown into first j

bins respectively for all j. Let Bi−1 and Bi denote the corresponding lower bounds before and after
throwing the ith ball. There are 4 possible cases:

1. If Bi = Bi−1 + 1j: The ith ball was thrown into the jth bin, Bi−1
j < ∆j. This event has correspond-

ing probability P(xj−1 < Xi ≤ xj)P(Ai−1,B−1j).

2. If Bi = Bi−1 + 1j: The ith ball spilled over into the jth bin from a lower indexed bin. ψ(B, ∆, j)
corresponds to the smallest index k such that a ball thrown in k spills over into bin j. Then, the



corresponding probability is:

P(xk−1 < Xi ≤ xd)P(Ai−1,B−1k) =
j

∑
k=ψ(B,∆,j)

P(xk−1 < Xi ≤ xk)P(Ai−1,B) (27)

3. If Bi = Bi−1: The ith ball was thrown into the jth bin where
⋂d

k=j{Bk = ∆j} (all subsequent
bins are full). θ(B, ∆) corresponds to the smallest index where all subsequent bins are full. This
event then has corresponding probability:

P(xk−1 < Xi ≤ xd)P(Ai−1,B) =
d

∑
k=θ(B,∆)

P(xk−1 < Xi ≤ xk)P(Ai−1,B) (28)

.

4. If Bi = Bi−1: The ith ball doesn’t land in any bins. This event has corresponding probability
P(Xi > xd)P(Ai−1,B).

Summing up the probability of these events yields the desired result.

Theorem 2. By the end of the ith iteration, P(Ai,B) = Ti(B) for i = 0, . . . , n and 0 ≤ B ≤ ∆.

Proof. The proof is by strong induction on i. In the base case, before the first iteration (0 balls have
been thrown), we have that P(A0,0) = 1. Likewise in our algorithm, T0(0) = 1.

We now prove the inductive step for i ≥ 1. Assume the strong induction hypothesis, namely
P(Ai−1,B) = Ti−1(B) for all 0 ≤ B ≤ n. Defining ψ(B, ∆, j) and θ(B, ∆) to be as in (23) and (24)
respectively, we have the following by Theorem (1) and the strong induction hypothesis:

P(Ai,B) = P(Xi > xθ(B,∆))P(Ai−1,B) +
d

∑
j=1

j

∑
k=φ(B,∆,j)

P(Xi ∈ Ik)P(Ai−1,B−1k) (29)

4.5 Expected Revenue in GFP and Myerson’s

In addition to the output of the algorithm having interpretation as the joint cdf of order statistics of
non-identically distributed random variables evaluated at a point x, the table entries T(B) are also
meaningful. In particular, they represent the probability that there are at least Bi balls in the first i
bins (there are at least Bi random variables at most xi). Furthermore, we have exact equality between
Bi and the number of balls in bin i if Bi−1 < ∆i and Bi < ∆i. In the case of the first bin, we have strict
equality if B1 < ∆1 = c1. As such, we can use this fact to compute the expected value of the ith order
statistic which will be useful in characterizing the expected revenue of GFP and Myerson’s auction as
well as the expected payoff in the GFP and GSP settings. Tackling the issue of computing expected
revenue first, we state a useful relationship that will let us compute this quantity:



Theorem 3. Let Tm+1,x
n denote the Spill-Over tables after n iterations with input parameters C = {m + 1} at

point −x with underlying distributions F−bi for i ∈ [n]. Then for B ∈ [m] we have:

Fb(i)(x) =
m+1

∑
j=i

Tm+1,x
n (j) (30)

Proof. Recall that we have exact equality of B and the number of balls in the first bin when B < m + 1.
Here, the first bin denotes the region (−∞,−x] for the negated versions of the bids. This yields the
equivalent of the region [x, ∞) for the non-negated bids. Hence, for B < m + 1 Tm+1,x

n (B) denotes
probability that the exact number of bids in the range [x, ∞) is B. Similarly, Tm+1,x

n (m + 1) denotes the
probability that there are at least m + 1 bids at least x.

Fb(i)(x) = P(ith largest bid at most x) (31)

= P(At least i bids at least x) (32)

= P(At least m + 1 bids at least x) +
m

∑
j=i

P(Exactly j bids at least x) (33)

= Tm+1,x
n (m + 1) +

m

∑
j=i

Tm+1,x
n (j) (34)

=
m+1

∑
j=i

Tm+1,x
n (j) (35)

Having an easily computable expression for the cdf the ith largest bid in the GFP setting, we can
discretize (18) and evaluate the cdf multiplied by the indicator function of being greater than the
reserve π at each of the lattice points. Summing over each of these points yields the expectation
(up to discretization error) of the expected payment of the ith highest bidder. Summing over these
expressions for i ∈ {1, . . . , m} yields the expected revenue of the GFP. A similar procedure can be
applied for Myerson’s auction, where instead of computing sums of the expectations of the m largest
bids greater than the reserve π, we compute the sums of the expectations of the m largest non-negative
virtual valuations.

4.6 Expected Utility in GFP and GSP

As we mentioned earlier, the expected payoff in the GSP and GFP auctions Eb−i |Aθ
(vixi(bi, b−i,Aθ)) =

∑m
j=1 viP(win slot j with bid b | Fb−i)αj can also be computed using the previous observation charac-

terizing when Bi is exact. We will need a slight modification of the Spill-Over algorithm for the case
d = 1 and discrete distributions, as we will be discretizing the valuation and bid space in order to
account for ties.

Consider computing the expected utility of bidder i given their valuation vi, opponent bid distri-
butions Fbj|Aθ

for j 6= i, and auction Aθ . Let b ∈ B be some value in the support of discrete distribu-
tions Fbj|Aθ

for j 6= i. Letting bj ∼ Fbj|Aθ
be independent bids, we define Ub

i : N×N×B → [0, 1] to be
a dynamic programming table such that for x ∈ [m− 1], y ∈ [n], z ∈ B:



Ub
i (x, y, z) = Prob (x values in b−i > b, y values in b−i = b, z is the next largest bid in b−i < b)

(36)

As per the Spill-Over algorithm’s insight, for y ∈ [n], z ∈ B, we can compress some information
for the case x ≥ m into a single entry:

Ub
i (m, y, z) = Prob (at least m values in b−i > b, y values in b−i = b, z is the next largest bid in b−i < b)

(37)

We initialize the table to be all zeros except at U(0, 0,
¯
b) = 1. The recurrence relation is similar to

that of the Spill-Over algorithm for the first two entries x and y, as this is simply updating the proba-
bility that some number of bids take on a value in a specified range; namely (b, ∞) and b respectively.
The last entry allows us to obtain the conditional distribution of the next largest bid given the current
bid. Iterating over j = 1, . . . , n, j 6= i, the recurrence relation is as follows:

1. Initialize a new table Ũb
i to all zeros and for notational simplicity, assume Ub

i (x′, y′, z′) = 0 for
x′ /∈ [m], y′ /∈ [n], z′ /∈ B. For x ∈ [m− 1], y ∈ [n], z ∈ B:

Ũb
i (x, y, z) = Ub

i (x− 1, y, z)P(bj > b) + Ub
i (x, y− 1, z)P(bj = b) + ∑

z′<z
Ub

i (x, y, z′)P(bj = z′)

(38)

2. For the case x = [m], we have a slightly modified relation:

Ũb
i (m, y, z) =

[
Ub

i (m, y, z) + Ub
i (m− 1, y, z)

]
P(bj > b) (39)

+ Ub
i (m, y− 1, z)P(bj = b) + ∑

z′<z
Ub

i (m, y, z′)P(bj = z′) (40)

3. After all entries of Ũb
i have been updated, then set Ub

i = Ũb
i . Repeat this process for all j 6= i.

More formally, the algorithm is as follows:



Algorithm 4 Conditional Spill-Over Algorithm for d = 1
Require: m, n ∈ N, i ∈ [n], B, b ∈ B, {P(bj > b) = pj,+, P(bj = b) = pj,=, P(bj = z) = pj,z} for all

j 6= i, z < b
Ensure: Table Ub

i
1: Ub

i (0, 0, 0) = 1
2: Ũb

i = Ub
i

3: for j ∈ 1, . . . , n, j 6= i do
4: for x ∈ [m], y ∈ [n], z ∈ B do
5: Ũb

i (x, y, z) = Ub
i (x− 1, y, z)pj,+ + Ub

i (x, y− 1, z)pj,= + ∑z′<z Ub
i (x, y, z′)pj,z′

6: end for
7: for y ∈ [n], z ∈ B do
8: Ũb

i (m, y, z)+ = Ub
i (m, y, z)pj,+

9: end for
10: Ub

i ← Ũb
i

11: end for
12: return Ub

i

The proof is similar to that of the Spill-Over algorithm. While we do not provide the formal proof
here, the proof overview relies on the disjoint-ness of events of the form

{Exactly x bids in some interval, exactly y bids in a separate interval, the next highest bid takes on value z}
(41)

and applying the law of total probability. Now, the table is of size O(mn|B|) and each update re-
quires summing over O(|B|) terms for total algorithm space and time complexities of O(mn|B|) and
O(mn|B|2) respectively. Now, we can characterize the expected payoff of the GFP and GSP auctions
through this algorithm. Firstly, the troublesome term P(win slot k with bid b | Fb−i) in the expression
for the expected payoff for bidder i for bidding at b with valuation vi given competitor distributions
Fb−i |Aθ

can now be expressed as a function of the table Ub
i :

Theorem 4. Let Ub
i denote the conditional Spill-Over table with input parameters C = {m + 1} at point b

with underlying distributions Fbj for j 6= i and i, j ∈ [n]. Assuming uniformly random tie-breaking, then we
have the following relationship for x + y ≥ k− 1:

P(win slot k with bid b | Fb−i) = ∑
x<k

∑
z∈B

Ub
i (x, y, z)
y + 1

(42)

Proof. In order to have a positive probability of being allocated slot k, we require that there be strictly
fewer than k bids greater than b (or else bidder i will be allocated a lower slot) and also x + y ≥ k− 1
(or else bidder i will be allocated a higher slot). In these cases, the probability that we are allocated
slot k is the number of bidders, including bidder i, who tied at bid b; namely y + 1. By the law of total
probability, we can sum over all entries z ∈ B in Ub

i to obtain the probability that there are x bids
strictly greater than b and y bids at b.



One may make the observation that z is actually unnecessary in this computation as we simply
marginalize it out at the end. Indeed this is the case; and a more efficient algorithm—faster by a factor
of |B|2—can be obtained by only considering probabilities of the form:

P(Exactly x bids strictly greater than b and exactly y bids at b) (43)

.
We have implemented this simplified conditional algorithm for the GFP. The reason why we show

this algorithm is that the expected payments Eb−i |Aθ
(pi(bi, b−i, GSP(π)) can also be obtained from

this table:

Theorem 5. Let Ub
i denote the conditional Spill-Over table with input parameters C = {m + 1} at point b

with underlying distributions Fbj for j 6= i and i, j ∈ [n]. Assuming uniformly random tie-breaking, then the
expected payment by bidding at b ≥ π given competitor bidding distributions Fb−i |Aθ

:

Eb−i |Aθ
(pi(bi, b−i, GSP(π)) = ∑

x+y<m,z∈B

[
y

y + 1
Ui(x, y, z)b +

1
y + 1

Ui(x, y, z)max(z, π)

]
(44)

+ ∑
x+y≥m,x<m,z∈B

[
m− x
y + 1

Ui(x, y, z)b
]

(45)

Proof. Similar to the analysis done for the probability of winning a particular slot k with a bid b,
we consider a particular table entry Ui(x, y, z) item and multiply by the payment associated at that
particular configuration of (x, y, z).

1. In the case that x ≥ m, then bidder i is not allocated an item.

2. If x < m and x + y < m, then there is a y
y+1 probability that bidder i is allocated any of slots

x + 1, . . . , x + y and must pay the bid of the winner of the next item, which in this case is b.
There is a 1

y+1 probability bidder i is allocated item x + y + 1 and must pay the maximum of the
reserve and the bid of the winner of the next item, which is max(z, π).

3. If x < m and x + y ≥ m, then there are some bidders who tied and will not be allocated an
item. There are m− x items remaining and y + 1 bidders who tied with bid b, so the probability
that bidder i is allocated an item is m−x

y+1 . Consequently, their expected payment in this case is
m−x
y+1 (b).

4.7 Expected Revenue in GSP

The expected revenue in GSP can be computed in a similar fashion to the expected payments in the
GSP setting. That is, since we have already computed the expected payment of the ith bidder for
bidding at b for a particular valuation, in order to compute their expected payment over all possible
bids, we can simply enumerate over their expected utility maximizing bid for each possible valuation
vi and weigh the expected payments by fvi(vi). Summing over the expected payment of all bidders—
which is a strategy we can also employ to compute the expected payment in the GFP setting—yields
the expected revenue of GSP.



Theorem 6. Let Eb−i (pi(b∗(v), b−i,Aθ)) denote the expected payment under the utility maximizing bid
given valuation v. Then the expected revenue of GSP can be computed as the sum of the expected payments of
each bidder:

n

∑
i=1

Evi

[
Eb−i (pi(b∗(vi), b−i, GSP(π)))

]
=

n

∑
i=1

∑
v∈B

fvi(v)Eb−i (pi(b∗(v), b−i, GSP(π))) (46)

Proof. This follows immediately from linearity of expectations and the definition of expectation.



5 Experiments and Results

In this section, we describe the two experiments that we will run, the results, and provide some
analysis. In particular, we will be running a toy experiment with only a single good and n = 2, 4, 8
bidders with i.i.d. Unif(0, 1) valuations to see whether the results match those predicted by theory for
GFP and GSP. We will then run a small scale test with k = 2 slots with CTRs [α1, α2] = [0.8, 0.6] and n =
2, 4, 8 bidders with i.i.d. valuation distributions Unif(0, 1). We will use discretization points t

100 for
t ∈ [100]. We will then more closely look at how the expected revenue and bidder distributions change
over iterations of best response dynamics and as the reserve price varies. In both experiments, we also
try different initial bidding distribution initializations and variants of best response dynamics, such as
sequential best response dynamics (SBRD) where bidders learn sequentially and weighted probability
strategies (WPS) where bidders select bids with probability exponential in its conferred expected
utility. These variants increase the ’noise’ in the best response dynamics system as simultaneous
BRD yields strictly symmetric bidding distributions, whereas SBRD does not. WPS allows bidders to
have a mixed strategy for a fixed valuation, which combined with SBRD, yields the most constraint
relaxed dynamical system over the space of strategies. In other words, SBRD relaxes the symmetric
assumption and WPS relaxes the single dominant strategy assumption.

5.1 Single Item

For this experiment, we wanted to see whether best response dynamics can recover the dominant
strategies in the m = 1 case for GSP and GFP. This corresponds to the standard Vickrey auction which
has several nice properties; particularly so in the case where the bidder valuations are Unif(0, 1) which
we will assume. In GSP, bidders have a dominant strategy for any fixed valuation which is to bid
truthfully (DSIC) subject to the reserve price. Similarly, in GFP, assuming n bidders with Unif(0, 1)
valuations, bidder i bidding at n

n+1 (vi) constitutes a Nash equilibrium for any fixed vi without a
reserve. Similarly, for reserve price π, taking first order conditions on the utility for a bidder i with
fixed valuation vi in GFP yields:

d
vi

[
(v− bi(vi))P(vi > vjforall j)

]
= 0→ b′i(vi) =

(n− 1)(vi − bi(vi))

vi
(47)

Using the initial condition that bi(π) = π, we obtain that the Bayes Nash equilibrium bid in the GFP
with n bidders and reserve π is given by:

bi(vi) = (1− 1
n
)vi +

πn

nvn−1
i

(48)

Note though, that this is only a symmetric BNE. This is a considerable difference, seeing that GSP
is DSIC and GFP does not have a dominant strategy. Since the strategies of the bidders in the one-item
GSP should not depend on those of others, we should expect convergence of best response dynamics
in a single iteration—regardless of the initialization—to truthful behavior subject to the reserve price.
However, since the BNE (SBNE) in the GFP is dependent on the other bidders behaving the same, it
might not be possible to recover this particular BNE. Indeed, we verify this in our results for the GFP.
We are also interested in comparing the revenues and optimal reserve prices yielded by both GFP and
GSP when running BRD and its variants as compared to the the theoretical expected revenue.



5.1.1 Learned Strategies

Here, we show figures depicting the bid distributions after running 100 iterations of BRD/SBRD/WPS.
Since the bid function are monotonic, taking the inverse of the bidding distribution yields the bid
function. We also include the shifted versions of the bidding distributions—learning dynamics run
for an extra trial—in order to see the convergence or non-convergence of these dynamics. For each
experiment, the pink line denotes the BNE.

Figure 1: Neither simultaneous nor sequential learning can be seen to recover the BNE or converge
to any equilibrium, though it is apparent that the bidder distributions cycle as the sequential and
simultaneous shifted curves overlap entirely. It is interesting that both BRD and SBRD return step
functions in which bidders’s valuations ’pool’ (must be strictly monotonic) into the same bid, which
at least for the GSP, Gomes and Sweeney showed should not be the case in any BNE. This phenomena
is due to the discretized nature of the experiment. We will see that sequential learning also does not
return symmetric bidding functions/distributions. However, WPS, shown in green, converges, traces
the theoretical optima, and is also symmetric, though this is not shown here.

Figure 2: Much like the case for n = 2, the simultaneous and sequential do not converge to the
theoretical equilibrium, or any equilibrium for that matter. WPS once again hugs the theoretical value.

Figure 3: Much like the case for n = 2 and n = 4, the simultaneous and sequential do not converge
to the theoretical equilibrium, or any equilibrium for that matter. WPS once again hugs the theoretical
value, though is slightly above as opposed to slightly below for n = 2.

Figure 4: The BNE is shown in pink. Both simultaneous and sequential converge to the theoretical
equilibrium whereas the weighted is slightly above the equilibrium. It is worth noting that both
sequential and weighted both converge to a symmetric equilibrium.

Figure 5:The analysis is identical to the case for n = 2, except now the weighted is more so above
the theoretical equilibrium.

Figure 6: The analysis is identical to the case for n = 2, except now the weighted is even more so
above the theoretical equilibrium than in n = 4.

Figure 7: The different bidder distributions are shown to be distinct step functions, somewhat cen-
tered around the equilibrium. This shows us the cycling behavior seen in GFP when using sequential
learning; a similar pattern appears using the bidding distributions of time-shifted simultaneous learn-
ing.



Figure 1: Bidder dynamics run for 100 and 101
trials for GFP, n = 2, π = 1

2 .
Figure 2: Bidder dynamics run for 100 and 101
trials for GFP, n = 4, π = 1

2 .

Figure 3: Bidder dynamics run for 100 and 101
trials for GFP, n = 8, π = 1

2 .
Figure 4: Bidder dynamics run for 100 and 101
trials for GSP, n = 2.

5.1.2 Expected Revenue and Optimal Reserve

Plotting the expected revenue, we can see that we can recover the optimal reserve of 1
2 in most of the

cases, though there are some exceptions, especially for GFP using BRD or SBRD due to cycling.
Figure 8: Notice the additional noise, particularly for smaller reserve. This is due to the cycling

behavior as seen in the previous section being more prevalent for small reserves, as they get stuck in
low revenue cycles. Increasing the reserve incentivizes bidders to shade less, so the expected revenue
for higher reserves follows that of the theoretical.

Figure 9: Much like in the simultaneous case, cycling behavior as seen in the previous section



Figure 5: Bidder dynamics run for 100 and 101
trials for GSP, n = 4, π = 1

2 .
Figure 6: Bidder dynamics run for 100 and 101
trials for GSP, n = 8.

Figure 7: Bidder dynamics run for 100 and 101
trials for GFP, n = 4, π = 1

2 , using SBRD.

being more prevalent for small reserves, as they get stuck in low revenue cycles. Increasing the reserve
incentivizes bidders to shade less, so the expected revenue for higher reserves follows that of the
theoretical. It is worth noting that for a larger number of bidders, the effect of the cycling on expected
revenue is lessened in the case of sequential versus simultaneous bidding.

Figure 10: Unlike in the simultaneous and sequential setting, the revenue here almost traces that
of the equilibrium revenue. This is due to the near-convergence of the bidding behavior to the equi-
librium bidding behavior, for example, in the case for π = 1

2 as we saw earlier.
Figure 11: As we have shown the bidder behavior converges to the theoretical in the simultaneous

setting (at least for π = 1
2 , it is not surprising to see the BRD recovering the revenue curve. Note



that due to implementation specifics, bids in BRD, SBRD, and WPS are rounded up to the nearest
discretization factor, which explains the slight overshoot in revenue.

Figure 12: As the bidding distributions don’t converge nicely to the BNE (at least in the π = 1
2

case), then it is not surprising that we cannot recover the revenue curve though the shape is similar.

Figure 8: Shown above is the reserve vs. ex-
pected revenue for each of n = 2, 4, 8 using si-
multaneous learning in GFP.

Figure 9: Shown above is the reserve vs. ex-
pected revenue for each of n = 2, 4, 8 using se-
quential learning in GFP.

Figure 10: Shown above is the reserve vs. ex-
pected revenue for each of n = 2, 4, 8 using
weighted learning in GFP.

Figure 11: Shown above is the reserve vs. ex-
pected revenue for each of n = 2, 4, 8 using si-
multaneous learning in GSP.



Figure 12: Shown above is the reserve vs. ex-
pected revenue for each of n = 2, 4, 8 using se-
quential learning in GSP. Like above, we have
shown the bidder behavior converges to the the-
oretical in the sequential setting.

Figure 13: Shown above is the reserve vs.
expected revenue for each of n = 2, 4, 8 using
weighted learning in GSP.

5.2 Multiple Items, i.i.d. valuations

Here, we let k = 2 and α1 = 0.8, α2 = 0.6. Recall the symmetric equilibrium behavior as predicted in
theory for the GSP and GFP given by Equations (9) and (7). We will show that the cycling behavior
as seen in GFP’s BRD and SBRD in the toy example extends into this setting as well, in addition to
the GSP’s BRD and SBRD. Most importantly though, we note that the expected revenues as provided
in the Gomes, Sweeney 2014, and Han, Liu 2015 papers are under the assumption that α1 = 1. For
example, in the GFP setting, it is apparent that bidders will never bid above their maximum pos-
sible valuation multiplied by the largest alpha, as this would yield non-positive utility. However,
in the graphs of the theoretical equilibrium revenue, we see that these do indeed return a positive
expected revenue suggesting that bidders are willing to bid larger than their maximum possible val-
uation (which in our case is 1) multiplied by the largest alpha (which is 0.8). Note that in both of the
learned strategies, due to the scaling factor issue with α1 = 0.8 < 1, the theoretical distribution is sig-
nificantly different. As the bidding behavior in SBRD seems to be more tightly concentrated around
the theoretically predicted, we will be using this learning style to plot the expected revenue versus
reserve.

5.2.1 Learned Strategies

5.2.2 Expected Revenue and Optimal Reserve



Figure 14: We run BRD on GSP for 100, 101, 102,
and 103 iterations at π = 1

2 , n = 4 respectively
to see that the bidder behavior cycles in periods
of 2. Again, the theoretical equilibrium here is
seemingly off due to the α1 scaling issue.

Figure 15: We run SBRD on GSP for 100 itera-
tions at π = 1

2 , n = 4 and the bidder distribu-
tions do not converge, nor are they symmetric.
Note that the bids are generally smaller than the
theoretical.

Figure 16: GFP, simultaneous learning. We note
that we once again observe noise due the cycling
behavior as we saw in the GFP, one item, and
simultaneous learning setting. The obtained
curves is a horizontally-scaled (by roughly 0.8)
version of the theoretical revenue, which is due
to the assumption that α1 = 1 in the papers in
which they were derived. It is also apparent
that the cycling behavior actually worsens as the
number of bidders increases.

Figure 17: GFP, sequential learning. Like above,
the cycling in GFP yields noisy expected rev-
enue curves; though the effect is less apparent
than in simultaneous learning. Once again,
we see that the recovered revenue curves are a
horizontally scaled version (also by 0.8) version
of the theoretical revenue curves.



Figure 18: GFP, weighted learning. Unlike the
revenue curves above, the revenue curves ter-
minate at 0.6, though the shapes of the curves
vaguely resembles that of the theoretical. In-
terestingly, this is because the bidder distribu-
tions recovered by GFP terminate at 0.6; and as
the bidding distributions recovered quickly con-
verge this pseudo-equilibrium, then there is no
incentive to ever bid larger than 0.6

Figure 19: GSP, simultaneous learning. Here,
like in the GFP simultaneous, we have cycling
behavior which yields noisy revenue curves
and a similar horizontal scaling factor of 0.8.
The curves are noticeably less noisy than that of
the GFP, though, and but also overshoot (rather
than undershoot) the theoretical equilibrium
revenues.



Figure 20: GSP, sequential learning. This is
the more well recovered revenue curves (up
to the scaling constant of 0.8) as despite the
bidder behavior cycling and not converging to
a symmetric equilibrium, the bidder’s behave
very similarly suggesting that a symmetric
equilibrium is nearby.

Figure 21: GSP, weighted learning. Even
more so than the sequential learning version,
weighted learning almost recovers the theoreti-
cal revenue curves (up to a scaling constant of
0.8). Furthermore, it immediately recovers a
symmetric bidding distribution, though due to
the exponentially weighted scheme, puts some
non-negative mass in the bidder distributions
above 0.8 which results in having positive rev-
enue past a reserve of 0.8.



6 Conclusion

6.1 Summary

We have studied the GFP and GSP from the standpoint of best response dynamics and two slight
variants involving sequential and weighted learning. In an attempt to recover some of the theoretical
results as proven in [6] and [10], we have ran several experiments with varying numbers of bidders
and the bidding distribution learner. Using novel, fast algorithms to compute the joint and conditional
distributions of order statistics, we are able to exactly characterize the utility of bidders and revenue
of auctions. Listing the following observations made in our experiments:

1. Simultaneous learning is the most prone to bidder behavior cycles, leading to valuations pooling
over bids. This is due to the discretized nature of the valuation and bid space. As a consequence,
the resultant revenue distributions are noisy and initialization dependent, particularly so in
GFP. This pooling behavior—valuations mapping to the same bid—is not completely unrealistic;
as some advertisers may not necessarily have a smooth valuation to bid utility maximizing-
function. Instead, one may prefer to simplify their bid function and cluster together certain
valuation ranges and map to a single bid. For example, a women’s fashion company may bid
some high value if the user is known to be female, bid some intermediate value if unsure of the
user’s gender, and bid low if the user is known male.

2. Sequential learning, while also prone to bidder behavior cycles, converges more closely to the
theoretical distributions than simultaneous learning. In particular, the differences in the cycling
behavior and bidder asymmetries in sequential learning are smaller than that of simultaneous,
which yields a smaller noise on the revenue curves.

3. Weighted learning consistently yields convergent symmetric distributions, which seems to agree
with the guaranteed existence of mixed-Nash equilibria, but not necessarily Nash equilibria.
Using a weighted scheme, while is not technically best response dynamics, almost recovers the
theoretical BNE in the GFP m = 1, and GSP m = 1, 2 cases. As this seems to converge to sym-
metric distributions, this learning scheme may be the best suited to estimating revenue curves
for more complicated settings, such as larger n, m, k, asymmetric α’s or valuation distributions.

4. The theoretical BNE optimal reserve price of 0.5 in the case of m = 1 and 0.4 for m = 2 was
approximately recovered in all learning schemes, except for GFP m = 2, weighted. This is an
interesting result in and of itself considering the non-convergence of many of learning schemes
to that of the BNE, suggesting that there may be a connection between the optimal reserve
within bidder behavior cycles and that of the true optimal reserve.

6.2 Future Work

On the topic of generalizations to higher dimensions, a fairly natural extension of our experiments is
to that of the case of asymmetric click through rates, valuation distributions, non monotone hazard
rate valuation distributions, or non-uniform reserve prices. Our machinery does not rely on any of
these assumptions and hence can be used to estimate expected revenue and optimal reserve price



(vectors) for more complicated auction settings. In the opposite direction as our computational ef-
forts, the theoretical convergence properties of the various learning schemes remains to be shown
and is of considerable interest on its own. As earlier mentioned, there may be a mathematical con-
nection between the existence of a mixed Nash equilibrium and the symmetric convergence of the
weighted learning scheme. Similarly, the reasons for the non-convergence of and valuation pool-
ing phenomenon of the simultaneous and sequential best response dynamics is not well understood,
though we speculate that this is a result of discretization. Additionally, the following few questions
are also of interest:

1. Under what initial conditions do the various learning schemes settle into equilibrium? Sym-
metric equilibrium?

2. Does discretization necessarily lead to pooling behavior or will finer discretization eliminate
this issue?

3. From the perspective of revenue and the optimal reserve, what statistical properties do the
cycles in the simultaneous and sequential learning settings have?
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