A Dynamic Programming Algorithm to Compute Joint
Distribution of Order Statistics on Graphs

Rigel Galgana

Brown University

Abstract

Order statistics play a fundamental role
in statistical procedures such as risk esti-
mation, outlier detection, and multiple hy-
pothesis testing as well as in the analyses
of mechanism design, queues, load balanc-
ing, and various other logistical processes
involving ranks. In some of these cases, it
may be desirable to compute the exact val-
ues from the joint distribution of d order
statistics. While this problem is already
computationally difficult even in the case of
n independent random variables, the ran-
dom variables often have no such indepen-
dence guarantees. Existing methods ob-
tain the cumulative distribution indirectly
by first computing and then aggregating
over the marginal distributions. In this pa-
per, we simplify and generalize an exist-
ing dynamic programming solution which
achieves a O(di—:l) and O(d?) factor of im-
provement in both time and space complex-
ity respectively over previous methods.

1 Introduction

Order statistics often arise in the theory and applica-
tion of risk estimation and management as they pos-
sess strong robustness guarantees considering their
ease of interpretation and computational simplicity
([? ? 7]). They also appear naturally across various
disciplines such as mechanism design and auction
theory ([?]), queue inference ([?]), and wireless
communication and scheduling ([?]). As such, effi-

Amy Greenwald
Brown University

Takehiro Oyakawa
Brown University

cient computation of the joint distribution of order
statistics is of significant practical interest.

To be more concrete, let Xq,..., X, denote a col-
lection of n real-valued random variables. The ith
order statistic, denoted as X(;), is defined as the ith
smallest value of X71,...,X,. The problem of inter-
est is as follows:

Definition 1. We desire to compute the joint cumu-
lative distribution function (cdf) Fe(x) of an ordered
set C = (c1,...,¢cq) of d € Zsq select order statistics
of n > d random wvariables X1,...,X,, ~ F, where
x € R Letting fx.(x) be the corresponding joint
probability density function, we have:

d
Fx.(x) = Fx(,..x., (@) =P ﬂ{X(cj) <uz;}
j=1

The primary main contribution of this work is an
efficient algorithm to compute F'x, in the both the
independent but not identical setting and dependent
random variable settings.

Related Work As mentioned previously, there
are several ways of approaching this problem in var-
ious special cases. Under the i.i.d. assumption, sev-
eral efficient algorithms with space and time com-
plexities polynomial in n and d are described in
Noe and Vandewiele [? |, Kotel-Nikova and Khmal-
adze [?], Moscovich [?]. Many of these algorithms
can be extended to the case of two-sided bounds on
the order statistics— P(O?zllj < X, < uj). In
von Schroeder and Dickhaus [? |, several of these
algorithms are generalized to the case where the vari-
ables are described by m = 2 homogeneous popula-
tions. For the general case of m-populations with
m > 1 and population sizes nq,...,ny,, Glueck [?]
provided an simplified the block-permanents in the
exact expression of the joint order statistic distribu-
tion given by Bapat-Beg [?], reducing the number
of computations from O(n") to O([Tj—, n{). Gal-

gana and Shi [? | generalized the method of Khmal-
adze [? | to the m-populations setting, further re-
ducing the time complexity to O(d]}, n3). In the
independent but not identical setting— i.e.m = n—
Boncelet Jr. [? | provides an O(dn?) algorithm.
Boncelet Jr. generalizes his approach to the depen-
dent setting, though the exact implementation and
complexity analysis are omitted.

Most of these methods explicitly or implicitly com-
pute the joint order statistic distribution by solv-
ing an equivalent combinatorial problem. At a high
level, this combinatorial problem involves a parti-
tion of the real line into contiguous regions, which
we refer to as bins, and tracks the probabilities of
the various ways that the random variables could
fall within these bins such that certain constraints
are satisfied. For example, the algorithm described
in [?]—which we examine more closely in the follow-
ing section—recursively updates the joint probabil-
ity mass function of the number of the first ¢ random
variables that fall within the bins. The main contri-
bution of our paper is an acceleration of Boncelet
Jr.’s method by exploiting the structure of C. We
additionally provide the full generalization of both
approaches to the case of two-sided bounds and de-
pendent random variables.

The paper is outlined as follows: In the next sec-
tion, we focus on the independent, but not necessar-
ily identically distributed random variables case and
translate the inherently continuous joint cdf prob-
lem as in Equation to an equivalent combina-
torial problem (Section . Using this combina-
torial setup, we describe Boncelet Jr.’s algorithm,
as well as motivate our key insight to improve its
performance in (Section We then provide rig-
orous justification to our algorithmic speedup and
state the key theorems and recurrence relation. Af-
terwards, we state the algorithm in its entirety for
the i.i.d. case with accompanying complexity anal-
ysis and experiments. Lastly, we describe the ex-
tension to two-sided bounds and dependent random
variables as well as its impact on time and space
complexities (Section [5)). We then conclude with a
summary of our work (Section [4).

2 The Combinatorial Problem

In this section, we translate the problem of com-
puting the joint cdf of a collection of order statis-
tics to an equivalent combinatorial problem of toss-
ing balls into bins. We assume independence with
X, ~ F; Vi € [n] for the following three sec-
tions before generalizing to dependent random vari-

2

ables. Restating this computation as a problem in-
volving balls and bins, we define xzg —oo and
ZT441 = +oo, and partition the real line into d + 1
intervals, Iy, ..., I441, hereafter bins: (—oo,+00)
(20, Zag1) = Uy (251, 25] U (24, Tagr) = UL, =
Ii.q41. Here, I = Uf:jli denotes the union of
bins I; through I inclusive. Moreover, we let
Dij =]P)({Xz S I]}) = FZ(JIJ) — E(Ij—l) denote the
probability that the ith ball resides in the jth bin,
for all j € [d + 1]. For 4,5 € [d + 1], we define the
key combinatorial objects:

e Define C;; = >, 1x,e1, as the “number of
the first ¢ balls that reside in bin I;.” Over-
loading notation, we use the random variable
Cijj = >ne1 1x,e1,,, as “the number of the
first ¢ balls that reside in bins I; through I;..”

e Furthermore, we define the random vectors
C; = (Ci1,...,Ciq) € [i]% to denote “the num-
ber of the first ¢ balls that reside in each bin.”

e For j € [d], we define the event D; ; = {Cj1.; >
¢;} as “the event that at least ¢; of the first ¢
balls reside in the first j bins.” We also define
D .50 = ﬂi/:jDi,k as “the event that at least ¢y,
of the first balls reside in the first & bins, I7.x,
forall ke {4,...,5'}”

To relate the original problem of computing Fe(x)
and this combinatorial setup, note that the event
X(¢;) < xj is means “the ¢;th smallest value of the
n random variables is less than or equal to x;.”
Equivalently, in the combinatorial setup we have
that “there are at least c; balls in bins I.;”: i.e.,
the event D, ; holds where call D,, ; the jth bin
condition. With this, we revisit Equation and
see that F¢(x) is equivalent to:

d d
P(m X(Cj) < xj) = P(m C'n,l:j > Cj) =]P)(Dn,lzd) .

Jj=1 J=1

In other words, we are interested in computing the
probability of satisfying all d bin conditions.

Definition 2. Assuming n independent random
variables, we let n,d,x,C be as in FEquation
where X; ~ F; for all i € [n]. With xg
—00, Tay1 = 00, and p = (Pij)icn]jeldt]
(Fi(w;) — Fi(7-1))icn),je[at), we define the com-
binatorial problem 1ICDFOS(C,p) as computing the
probability P (D, 1.4)-

This problem statement is fairly general and al-
lows for both continuous and discrete distributions,

with the only major assumption being independence.
When the independence assumption is relaxed, the
definition will change slightly and we will need to
construct a corresponding graphical model with cor-
responding ball throwing order—a schedule. We re-
serve the details for the later sections, as much of
the notation is unnecessary and may detract from
the intuitions gained from the solution to the inde-
pendent variables problem.

3 Our Solution

The primary goal of this paper is to improve the
performance of Boncelet Jr.’s algorithm using com-
binatorial simplifications. Boncelet Jr.’s algorithm’s
time and space complexity are exponential in d with
base n making it viable only in cases where d or n are
both small. While our proposed procedure will re-
main exponential in d like Boncelet Jr.’s algorithm,
there is still significant improvement in both space
and time complexity. To that end, we first describe
both pieces in order to understand their interaction.

3.1 Boncelet Jr.’s Algorithm

At a high level, Boncelet Jr.’s algorithm to solve
1JCDFOS(C, p) maintains probability tables describ-
ing the number of balls in each bin. Using our ter-
minology, the algorithm recursively updates a table
of probabilities of C; = k:

Definition 3. Let C and p be as in 1JCDFOS(C, p).
We define e; = (0,...,1,...,0) as a length d + 1
vector of 0’s with a 1 in the jth position. Then by
the law of total probability, we have:

Z pi,jP(Ci—l = k - ej).
{ilC;>0}

P(C; = k) =

For T = {i € [nx]%+! | E;, Lt > ¢,V € [d]}, the
probability of the corresponding 1JCDFOSis given by
P(Di1:a) = Y per P(Cn = K).

Using above recurrence, Boncelet Jr.’s algorithm
maintains a table T; : [n]4** — [0,1] of the prob-
abilities of P(C; = k) as a function of table T;_;.
It then sums over the entries in T, (k) such that
C,, = k satisfies the bin conditions D, 1.4. Since
| C; |= i, the size of dynamic programming table ¢
is given by (Hd). Using the Hockey Stick identity,
the total number of updates is given by:

i(i;d) _ (n+z+1>

1=0

Each of these updates requires summing over O(d)
terms, yielding time complexity O(d("tf“)). The
space complexity is O((":d)) as table ¢ can be dis-
carded once table ¢ + 1 is computed. We further
note that this algorithm extends to the dependent
setting as well, though a modification must be made
to track the locations of certain balls required to
obtain subsequent conditional distributions. This
generalization incurs additional space and computa-
tion, though we defer the complexity analysis to the
dependent variables section.

3.2 Combinatorial Simplification

In this section, we compress Boncelet Jr.’s prob-
ability tables to contain only information relevant
to computing the joint cumulative distribution.
Indeed, our new method maintains significantly
smaller tables at the cost of only a slightly more
computationally expensive updating function. This
improvement is accomplished by instead tracking the
distribution of a transformation S : [n*]+! — [n*]4
of the C;’s operating on ball count configurations
that allows us to ignore the exact placement of “su-
perfluous” balls. In accordance with our goal of ef-
ficiently computing 13CDFOS(C, p), this S must have
the following properties:

1. The distribution of S(C,,) is easier to maintain
than that of C,,.

2. We must be able to compute P(D,, 1.4) given
only the distribution of S(C),).

Motivating our choice of S are the following two ob-
servations. First, letting Si.;(k) denote the sum of
the first j entries of S(k), then S1.;(Cy) < Cp 1.
and ¢; < S1.;(Cy,) implies D,, ;. In other words, if
the some of the balls in C), are spilled over to the
right—i.e. relocated to a higher indexed bin—then
any bin condition satisfied by this right-shifted ball
count configuration will also be satisfied in the orig-
inal. With this, we define this transform such that
when there are at least 0; = ¢; — ¢;—1 balls in bin
I; for j € [d], any additional balls that fall (or are
spilled into) in bin I; are spilled into bin I;44.

Definition 4. Let C,p be as in 13CDFOS(C,p) and
assume co = 0 and d;41 = n. We define the spilling
transformation S : [n*]4t! — & car167] as follows:

S;(k) = min (6;, max (k —Zé

JEJ]

With this definition of S, we can show equivalence

between the event that S(C,,) = (d1,...,04) and bin
conditions D, 1.4.
Theorem 1. For any C, € [n]* and & =

(01,-..,04+1), we have that D,, 1.4 holds if and only
if S(Cp,) =6. Hence P(S(Cy)) =6) =P(Dy1.q)-

Proof. We first start with the forward direction. As-
sume that D, 1.4 holds. By definition,

nlcl<_> ﬂ{Cn1J>C]}<_>ﬂ{Cn1]>Z(5}
j=1 j=1

As (Ele Cnyi—

;) is non-negative,

5j§<zcn7i_5)+5 <]m€a;<] n,j:j’

25
Following this, we have for all j € [d]:

S;(Cn) =

Za

min (4, max Ch.j’:;
Jj'e

Now we prove the backwards direction; assume
that S;(C,) = ¢, for all j. We will show that

zzl{Si(Cn) = ¢;} implies D, 1,; by induction.
Starting with the base case j = 1:
0
01 = 51(C,) = min (41, Chjri1 — d;
1 =51(Cn) = min (&]I,Hea[ﬁ(i1 Zj:)

Z min (617 Cn,l)-

Thus, Cp,,1 > 61 = ¢; and the base case holds. For
the recursive case:

(5.7‘ = SJ(CTL) = min ((SJ, n N

Za

= §; < max (Cp
JE[J]

Za

Adding Zf;ll d; to both sides, we have:
j—1 Jj'—1

5 + (5 < max n,j/:j + Z 61)
i=1 7'ell i=1

= max (Cy jrj + ¢jr-1)
i’€ldl

= max (le;j —

Cn i1 — Cgir_ .
max (Cr1ijr—1 = ¢jr-1))

However, by strong induction we know that Cy, 1.5/ >
¢; for all j' < j, thus the last term is always non-
negative. Hence, j° = 1 corresponds to the maxi-
mum and as §; + >7_ §; = ¢;, we finish with:

¢j < max (Cp1j — (Crjjr—1 — ¢jr—1)) = C 1

J'€li]

O

Having established P (S(Cy)) = 8) = P(Dy.1.4), all
that remains is to actually compute the probability
of the former. In particular, we need to be able to
compute this without implicitly computing the dis-
tribution of C,, as this would amount to the work
that Boncelet Jr.’s algorithm already does. One
approach is instead of recursively maintaining the
distribution of C; like in Boncelet Jr.’s algorithm,
we instead track the distribution of S(C;). Using
the spilling analogy of S as motivation, the recur-
rence relation comes naturally. To help with this,
we define an additional set-valued function o(j, k) =
{jIuj’ < j: ﬂz;jl,{m- = 0;} to denote the set of bins
such that when a ball is thrown into any of these bins
given S(k) = k, the ball will land in or spill over
into I; under transformation S. Note that to avoid
confusion we use k € [n*]¢*! and Kk € ®d+1[5*])
The only way to obtain the event S(C;) = k is
if S(C;—1) = k —e; and ball i falls inside o(j, k)
with S;(C;) < ;. With this observation, and the
law of total probability, we can formally state our
key recurrence relation to obtain P(S(C;) = k) as a
function of the distribution of S(C;_1).

Theorem 2. Let C,p be as in 1JCDFOS(C,p) and
define S to be as in Definition . Then for p; j. =
2 jreotin) Pisi':

€)Di j k-
(1)
3.3 Algorithm and Performance Analysis

We begin by defining dynamic programming tables
T Qjelar1[0;] — [0,1] for i € [n*] with the inten-
tion that with the recurrence relation from above,
we have T;(k) = P(S(C;) = k). We describe our
procedure in Algorithm [f}

The total number of entries to be updated in our
algorithm is upper bounded as follows:

Z|{I‘LZK1;]':7;,I€S(S}‘:

i=1

d
om[[s) @

Algorithm 1 to solve

1JCDFOS(C, p)

Spilling Algorithm

Input: n,d € Nyn > d,C = (cq,...
[0 1]n><(d+1)
Output: P (D, 1.4)
1: §; =c¢; —c¢j_1,Vj €[d] for ¢j_1 =0
2: Deﬁne tables T; : ®]Ed[*1 = [0,1],Vi € [n*]

acd) € [n]d,p €

3: Initialize To(k) < 1 if kK = 0, else 0 for Kk €
®j€d[5*]

4: for i + 1 to ndd(l)

5: Ti(k) = Z i 1 Tica(k ej)zj’eg-(j7n)pi,j’

6: end for

7: return P (D, 1.q) = T,,(6) for § = (d1,...,0q)

We note that this upper bound ignores the con-
straint k1.; = ¢. While this was the primary con-
straint in the complexity analysis of Boncelet Jr.’s
algorithm, it only complicates that of our own al-
gorithm. Each entry of table T; for ¢ € [n] re-
quires summing over O(d?) terms as per T heorem
which yields space and time complexities of O(]] d;)
and O(nd? [] jea 0;) respectively. The worst case im-
provement corresponds to when the order statistics
given by C are evenly spaced, which yields §; ~ %.
The space and time complexities are O(n(n—l—d)dd_g)
and O(n(n+d)?d?>~%) respectively. We can now take
performance ratios of a lower bound on Boncelet
Jr.’s time complexity versus that of Algorithm [to
obtain at least a O((2t%)") and O((2t4)"d=2n~1)
factor of improvement in space and time complexi-
ties respectively.

One possible modification to our algorithm pre-
computing and store the values of ZjEJ(j/ﬁ) Di,js
which saves a factor of d computations, at a cost of
a factor of d memory. Regardless of the algorithm
modification, the spilling algorithm is significantly
more efficient than Boncelet Jr.’s in cases where the
desired order statistic indices are close together.

3.4 Extension to Two-Sided Bounds

In the previous section, we considered one-
sided bounds on the order statistics of the form
P(N X,y < ;). We can straightforwardly gen-
eralize ours (and Boncelet Jr.’s) method to two-
sided bounds of the form P((z; < X(,) < :Ej')
The primary insight in this case is that, similar to
X, < gﬁ implying a (loose) lower bound of ¢; on
the number of balls less than = s &5 < X(c;) implies
an (strict) upper bound of ¢; on the number of balls
less than x;. With this in mind, the modification
is as straightforward to maintain the distribution of

5

the balls w.r.t. the new lower bounds simultane-
ously. In particular, in addition to T containing the
usual joint distribution of the number of balls in the
bins defined by £ which we call C*, we also main-
tain the distribution of balls over the bins defined
by x~, which we call C~.

Since Boncelet Jr.’s algorithm tracks the exact lo-
cation of each ball, the generalization is quite sim-
ple. We construct a partition x of R with the parti-
tions at the points in = and ™. We assume that
- < xT element-wise, as well as £~ and xT are
sorted. With 9y = —oco and 2441 = 00, we con-
struct our probability vector p = (p;; = P(X; €
(Tj-1,2)))ien),je[2d+1)- Boncelet Jr.’s two-sided al-
gorithm proceeds by simultaneously updating the
distributions of Cj and C; according to p and T;_;.
In particular, we define function ¢~ : [2d + 1] —
[d+ 1] such that ¢~ (j) = >7,_; 14,cq- denotes the
index of the bin defined by &~ that corresponds to
the j’th bin defined by x. We define ¢* similarly.
We have the generalized updating step:

Theorem 3 (Boncelet Jr. Two Sided). Let
T; denote the joint distribution of the configura-
tion of the first i balls w.r.t. both £~ and T —

T;(k; k) =P(C; =k;,C} =k}. Then,
2d+1
T,(k; k) = Z piTim1(k] = eg-(j), ki — egi ()

For the final step where instead of summing over the
set T~ x It where T~ = {i € [nx]?+! | i 2
¢j,Vj € [} and T = {i € [nd® | Y20, i <
¢;,Vj € [d]}, the probability of the correspond-
ing 1JCDFOSsis given by > - piyer-xz+ P(Cr
k=,C; = k*). As in the single-sided case, we
can use a similar spilling function to speed up Bon-
celet Jr.’s two-sided algorithm. In particular, we
maintain both the distribution of S™(k;) = k;
which is the right-wards spilling transform of k,
and ST(k;") = k] which is the left-wards spilling
transform of k:;|r Note that for &j, we spill left-
wards to maintain an upper bound on the number of
balls in the first j bins, as opposed to a lower bound.
We define o= (j, k™) = {j}Uj’ < j : (Y=, {r; = di}
denote the set of bins that will right-spill into
(zj_1,;), where £~ is the transformed ball distri-
bution with respect to £=. We define o™ (j, k™) =
{JJuji>j: ﬂg/:jﬂ{nj' =;} analogously, with
Pijrwt = Dije{o(rm)net () Pigr We can
now define the two-sided spilling algorithm update
step.

Theorem 4 (Spillover Two-Sided).

Let T; de-

(Two Sided) Time Complexity Space Complexity

(Markov) Time Complexity Space Complexity

Boncelet Jr. O(d(”+g+1)2) O((n:d)Q)
Spillover O(nd? H?:1 5]2) O(H?:1 5J2)

Table 1: Two-Sided Complexity Comparison. The
complexity analysis is somewhat difficult as it depends
on the relationship and overlap between = and ™.
That is, C* and C~ are intimately related, so the total
number of entries to be updated is significantly smaller
than the product of the total number of possible C™
and C~. Because of this additional complication, we
give rather loose upper bounds on the space and time
complexity of both generalized Boncelet Jr.’s method as-
suming that C~ and C* are independent.

note the joint distribution of the transform of the
configuration of the first i balls w.r.t. both = and
at—Ti(k; k) = P(ST(C7) = K;,57(C) =

k. Then, Ti(k~, k") is given by

2d+1

- +
Z Tioa(k; —ep-(j), ki — eab*(j))pi,j,n;,nj
j=1

3.5 Extension to Dependent Variables

One of Boncelet Jr.’s algorithm primary advantages
is its ability to handle dependent random variables,
albeit with additional memory and computational
cost. This flexibility can be especially useful in
the analysis of Markov processes, hidden Markov
models, or autoregressive models which are com-
monly used for risk modeling in insurance or finan-
cial mathematics. The generalization to dependent
random variables requires some changes to the infor-
mation stored in the dynamic programming tables,
as we will need to understand the conditional dis-
tribution of future balls yet to be thrown given the
placement of the balls already thrown. Of course,
the task of tracking the exact placement of each
ball was one that we wanted to avoid in the first
place. We show that for a fixed Markov Random
Field structure, we can limit our memory of exact
placement to a small subset of the balls. We also
restrict ourselves to the simple case of Markov ran-
dom variables, though we provide the arbitrary de-
pendency structure case in the appendix.

1. For simplicity, let Xi,x;,xj € Z for all i,j.

We also assume lower and upper bounds on the
range of the X;’s of 1 and K. Define ¢ : [K] —
[d + 1] such that (k) = min;{j : k¥ < ¢;} de-
notes the index of the bin that & belongs to.

6

O(K (") O(K ("))

O(mdK I}, d;) O(KTI,d))

Boncelet Jr.

Spillover

Table 2: Dependent Case Complexity Compar-
ison for Markov Chains. We provide a complexity
analysis for the Markov dependent random variables ex-
tension of Boncelet Jr.’s and our Spillover algorithms.

2. Let p : [n] x [K] — [0,1]% with p;; denoting
the conditional distribution of X; over [K] given
that Xi,1 = k.

3. Let Ligw = Liy, 1=640,2 fOT J € [d],k €

K],k € ®{1[03].

In conjunction with our existing combinatorial
setup, we are ready to define both the key recursions
in the dependent generalization of Boncelet Jr.’s al-
gorithm and our Spillover algorithm.

Theorem 5 (Boncelet Jr. Markov). For all k; €
[n*]9HY and k € [K*] such that {C; = k;} and
{X; =k} are non-disjoint events, we have that with
Ti(ki k) =P (Ci = ki, X; = k),

Ti(ki, k) = pipTic1 (ki — eyiy, Xi = k)

Theorem 6 (Spillover Markov). For all k; €
®?:i [67] and k € [K*] such that {S(C;) = Kki} and
{X; = k} are non-disjoint events, we have that with
T’i(ﬁi7k) = P(S(Cﬁ = Ri7Xi = k‘),

d+1
Ti(ki, k) = Z pikTlic1(ki —ej, Xi = k)1 ik,
J=v (k)

3.6 Experiments

To verify our algorithm’s performance guarantees,
we directly compare with Boncelet Jr.’s algorithm.
We conduct two experiments, the first of which
varies the values of n,d,C in the independent case.
Then, for the experiments under the dependent
setup, we have random variables Xy, ..., X,,, where
X,’s state space is {—i,—i+1,...,4 — 1,4}. In the
independent setting, X; = v; where v; takes value
in {—1,0,1} with equal probability. In the setting
b(*) = 1, the random variables are Markov such that
Xiv1 = X; +v; with Xg = 0. For b(x) = 2, we let
Xito = X; + v; with Xg,X; = 0. As in the inde-
pendent random variables section, we implement the
version of both algorithms that disregard irrelevant
intermediary entries that cannot satisfy D;.4. For

n 6 12 18 24 30

d=1 69E-5 11E4 20E4 17E4 18E4
d=2 85E-4 16E4 23E4 27E4 3.7EA4
d=3 18E-4 31E4 44E-4 58E4 7.6EA4
d=4 34E-4 64E-4 95E4 14E-3 1.6E-3
d=5 7.2E4 14E-3 21E-3 28E-3 3.7E-3
d=6 15E-3 3.0E-3 5.6E-3 6.5E-3 T7.9E-3

Table 3: Spillover Algorithm Elapsed Time. We
ran an experiment from Galgana and Shi, et. al. (2021)
with n € {6,12,18,24,30} and C € {[d]} for d € [6].

n 6 12 18 24 30

d=1 11E4 4.0E-4 58E4 11E-3 1.6E-3
d=2 6.4E-4 28E-3 73E-3 17E-2 3.0E-2
d=3 13E-3 14E-2 6.1E2 17E-1 4.1E-1
d=4 38E-3 6.5E-2 38E-1 14E0 4.0E0
d=5 94E-3 24E-1 20E0 94E0 3.2E1
d=6 21E-2 84E-1 88E0 5.3E1 2.2E2

Table 4: Boncelet Jr.’s Algorithm Elapsed Time.
Our algorithm is significantly faster than the improved
version of Boncelet Jr.’s especially for larger n or d.

the first experiment, we fix n = 25 and vary d € [12]
and C = {1,...,d}. In the second experiment, we
fix d =2, C = {%,n} and vary n € [128]. The ex-
periments were run a computer with an Intel Xeon
E3-1240V5 CPU with 15.6 GB of memory.

4 Conclusion

In this paper, we describe the computation of the
joint cdf of d order statistics of n random variables;
in particular, we focus on the method provided in
[?], and show how the computational complexity of
Boncelet Jr.’s algorithm can be improved by com-
pressing dynamic programming tables to store only
information pertinent to computing the cdf rather
than the entire joint distribution of the ball config-
urations. We extend our procedure to handle de-
pendent random variables and show how this af-
fects the space and time complexity. In the worst
case of evenly spread d order statistics, our algo-
rithm improves the space and time complexity over
Boncelet Jr.’s by a factor of at least O((“4)") and
O((2t4)nd=2n=1) respectively.

5 Appendix

One of the key advantages to using Boncelet Jr.’s
algorithm over its competitors is its flexibility to
handle dependent random variables. Specifically,
Boncelet Jr.’s algorithm allows for dependency be-

Boncelet Jr. vs Spillover Dependent Algorithm

w{— Boncelet Jr., Independent
-=-- Boncelet)r, b(*) =1
—+— Boncelet Jr, b{*) = 2
—— Spillover, Independent
-== Spillover, b(*) = 1
=—+— Spillover, b(*) = 2

Time (log2 seconds)
o

-10 _—"/—\‘-_—L

0.0 05 10 15 20 25 30 35
log2 d

Boncelet Jr. vs Spillover Dependent Algorithm

—— Boncelet Jr,, Independent
24 === Boncelet)r, b(*) =1
—+— Boncelet |r, b(*) = 2
—— Spillover, Independent
—-== Spillover, b(*) =1
=21 —— Spillover, b(*) = 2

-4 4

—6 1

Time (log2 seconds)

-8 1

-10 4

logn

Figure 1: In the first figure, note that the slope of the
Spillover algorithm is about half of Boncelet Jr.’s. The
dip towards larger d, which is more noticeable for the
Spillover algorithm, is due to the pruning of irrelevant
intermediary entries. In the second figure, the slopes
of each pair of experiments is effectively equal, though
the Spillover algorithm is a constant multiplicative factor
faster.

tween random variables, albeit with additional mem-
ory and computational cost. This flexibility can be
especially useful for various stochastic processes such
as Markov processes or more general autoregressive
models A common application of computing order
statistic distributions for dependent random vari-
ables is estimating the maximum length of a queue.
The generalization to dependent random variables
requires some changes to the information stored in
the dynamic programming tables, as we will need
to understand the conditional distribution of balls
yet to be thrown given the placement of the balls
already thrown. Of course, the task of tracking the
exact placement of each ball was one that we wanted
to avoid in the first place. In this section, we show
that, in cases of sparse random variable dependency
structures, then we can limit our memory of exact

7 placement to a small subset of the balls.

5.1 Preliminaries

Given n random variables and their joint distribu-
tion F', we can construct the corresponding Markov
random field (MRF). In order to minimize the num-
ber of random variables tracked in our algorithm,
we utilize the local Markov property and the struc-
ture of the conditional dependencies in the MRF. We
adopt most of the combinatorial notation from the
previous section, however we will use an additional
partitioning of each bin to simulate exact placement
of each random variable. Letting node ¢ of the MRF
represent variable X;: EI

1. Define micro-bins and micro-bounds I;; and
xjp for j € [d] and h € [H], for granularity
factor H € N. Here, z; = zj0 < ..., < 250 =
Tj41 and Ij’h = (xj’h,l,xjﬁh].

2. Define the vector N; € ([d*]x [H])"® to denote
the micro-bin locations of the neighboring set of
i—the lower-indexed neighbors of ball i. By the
local Markov property, i is conditionally inde-
pendent of {1,...,7 — 1} given N;. Here, n(i)
denotes the number of lower-indexed neighbors
of i.

3. Define the vector B; € ([d+] x [H])*® to denote
the micro-bin locations of the boundary set of
i—the neighbors of balls i, . . ., n among the first
1—1 balls. Again by the local Markov property,
balls ¢ through n are conditionally independent
of {1,...,i—1} given B;. Here, b(i) denotes the
number of neighbors of balls ¢ through n among
the first ¢ — 1 balls.

4. Define the vector-valued transform N; : ([d*] x
[H])*®) — ([d] x [H])"® to select only the
entries of B; € ([d*] x [H])*® corresponding
to the neighbors of 4, namely A;. That is,
N;(B;) = N;.

5. Define p;(-) = pi(- | Ni(Bi) = jn) = pi(- |
N; = jn) to be the conditional distribution
of ball ¢ given {N; = jn}. Here, jy €
([d+] x [H]))™®. In practice, p;(-) can be esti-
mated through MCMC-sampling methods or by
numerical integration and marginalizing out its
higher-indexed neighbors. If the random vari-
ables are discrete, it may be computed exactly.

"We can instead let node i represent a different vari-
able v;, which creates a different visitation scheme v,
neighbor sets, and boundary sets. Consequently, the
choice of visitation scheme also impacts the algorithm’s
space and time complexity, and in general, computing
the optimal re-ordering is NP-hard. For simplicity, we
stick to the original ordering.

8

With our new notation, we can formally define the
dependent version of 13CDFOS(C, p).

Definition 5. Assuming random vari-
ables Xq,...,X,, we let n,d,x,C,F be
as in Definition (|1). We define p =
(4,5, (GN))ien], jeld], helH] jar € ([dH] x [H])» () =
(Fi(z; | Ni = gn) — Fi(zj P =
IN))iefn) jeldl helH).gare((d*]x (] - That s,

Dij,n(Jar) is the probability that ball i falls into
micro-bin I given N; Jn- We define the
combinatorial problem DICDFOS(C,p) as computing
the probability P (Dy, 1:4)-

At first, it seems there are only three additions to
Algorithm (1| required to solve Equation with de-
pendent random variables. First, we must further
sub-divide each bin. Second, we need our algorithm
to store AV; in micro-bin space by iteration i. Third,
we need to change our definition of p; to reflect the
dependency between the current random variable
and those in N;. In particular, instead of having
pi : [d] — [0,1] as the singular distribution of the
current ball over all bins, we can instead have a dis-
tribution p;(+) = p;(- | N; = jar). However, these
three changes are insufficient as the algorithm must
also track the location of balls that will be needed
to compute the conditional distribution of not only
ball ¢ but also i+ 1,...,n. More specifically, our al-
gorithm must not “forget” the location of the balls
in B; by storing the configuration in memory at each
time step 1.

5.2 Updated Recurrence

The updated recurrence relation is similar to The-
orem , except now we also need to take into
account B; and how they both impact the distri-
bution of ball i and also the placement of balls
1 + 1 through n. Moreover, we will also benefit
from defining set-valued function v; that takes ar-
gument jp € ([d*] x [H])?HD k € @,,4[07] and
returns the set of ji € ([dF] x [H])*® such that
{B; = jg}, {Biva = js}, and {S(Ci) = K} are
non-disjoint events—the ball configurations across
the three events are consistent. Lastly, we must
make an important distinction between when i is
in the boundary set of i + 1. As such, we define
a piece-wise function ~; that takes as arguments
gs € (d*] x [H)YD, j € ([d*] x [H])O,k e
®,cald;]. If i is in the boundary set of i + 1,
then let j,h denote the last entry of jz and set
vi(IB.Jg k) = Dpijn(Ni(B;) = jg). Otherwise,
we set it t0 D c o n) Zthl Pijr . n(Ni(Bi) = Jg)-
As ball i is conditionally independent of the event

S(C;) = k; given {N;(B;) = jn} or {N; = jnr}, the
following recurrence relation follows from the law of
total probability, much like in Equation :

Theorem 7. Let C,p be as in DICDFOS(C,p). De-
fine S to be as in Definition [{] and N;, B;,;,7; to
be as in the previous section. Then: Then:

P (S(Ci) = K, Bit1 = j)

> > Pk dp)vilds gk k)
j'€o(d+1,k) jp€Yi(in.K)

d
+> 2

J=ljzedi(dn,K)

(3)

P(Zv K — 617.7;3)71(]53.7237 K’)

Where, for brevity, we let P(i, k, jg) = P(S(C*~!) =

K’vBi = |B)

5.3 Algorithm and Performance Analysis

We begin by defining dynamiq programming tables
Tt @,eql07] x ([d*] x [H])D — [0,1] for i € [n]
with the intention that with the recurrence relation
from above, T;(k,js) = P(S(C;) = K, Biy1 = jn).
We describe our procedure in Algorithm

Algorithm
DJCDFOS(C, p)

2 Spilling Algorithm to solve

Input: n,d, H € N,n > d,C €
[0, 1]n><(d+1)><H><(H(d+1))"(i)
Output: P (D, 1.4)
1: 0;j =c; —c¢j_1,Yj € [d] for ¢;j_1 =0
2: Deﬁne tables T; : Q¢ 4[05] — [0,1], Vi € [n*]
3: Initialize Ty(k,0) < 1 1f Kk =0, else 0 for k €
®cl5]
4: for ¢ < 1 ton do
5. for j € [H(d+1)]*0+) do

4 p €

6: a = Zj’éo(d-‘rl,n) Zj'geiﬁi(jtsﬁ) Ti (k. 3)
Yi(JB: I+ K)
£ B o= X Vipentnm Ti (k=i db)
’71'(.73,]83 K’)
8: T, (k,jg) = a+p
9: end for
10: end for
11: return P (D,, 1.4) = T,,(9,0) for 6 = (61,...,04)

Just like in Algorithm [T} table T; is disposable once
table T;41 is computed. Hence, the space complex-
ity is bounded by size of the largest table, which
is of size O((Hd)"™) [I;ca(l +65)), where b(x) =
max;e, b(i). We note that b(x) is dependent on the
graph visitation scheme, which we assume to be sim-
ply 1,...,n wlog. Intuitively, the memory required

9

Time Complexity

O((Hd)1+2b(*)(n+d)n+dn7%7nd7d)
O((Hd)1+2b(*)n(n+ d)ddlfd)

Bonc
Spill

Table 5: Dependent Complexity Comparison. H
denotes the granularity factor and b(x) is the size of the
largest boundary set. H = 1 and b(*) = 0 when the
random variables are independent.

grows in the size of the largest boundary set. With
regards to the time complexity, we have that the up-
dating step to compute T;(k, jg) requires a summa-
tion over O(d) possible values of j', O(|;(js, K)|)
values of jp, and another O(d?) possible values of
j. Here, the quantity |¢;(45,)| is difficult to mea-
sure, so we upper bound it simply by O((Hd)?%),
where /A\; denotes the number of variables included
in the boundary set of ¢ but not of ¢ + 1. Notice
that A; < b(i) < b(x). With this, since there are
O((Hd)"™) [1;cq(1+46;)) table entries in T; to com-
pute for each i € [n], we have a total time com-
plexity of O(n(Hd)' "™ T, _,(146;)). Like in the
independent case, we can assume worst case with
evenly spaced order statistics, which yields total
space and time complexities of O((Hd)**)nd+1qd—9)
and O(n(Hd)*2*®)nd+t1q1=4) respectively.

	Introduction
	The Combinatorial Problem
	Our Solution
	Boncelet Jr.'s Algorithm
	Combinatorial Simplification
	Algorithm and Performance Analysis
	Extension to Two-Sided Bounds
	Extension to Dependent Variables
	Experiments

	Conclusion
	Appendix
	Preliminaries
	Updated Recurrence
	Algorithm and Performance Analysis

