
Efficiently Sampling Order Statistics

July 15, 2022

Abstract

Many problems involve understanding extremal behavior, such as rare event simulation or
failure rate analysis. Modeling these problems often entails Monte Carlo simulation of processes
requiring samples from order statistic distributions. In this paper, we provide an efficient meta-
heuristic to sample X(k,n)–the kth order statistic of n random variables, with Xi

i.i.d.∼ F . Our
method is two-fold: first, we consider a local version of the original order statistic sampling
problem, followed by solving this smaller, simpler sub-problem. More specifically, we partition
the support of F into m contiguous regions. We then sample the region BT in which X(k,n) took
value in, the number of random variables nT inside this region, and which order statistic kT
of these nT variables corresponds to the kth order statistic of the original problem. With the
conditional distribution FT , we use an order statistic sampling algorithm to obtain the kT th
order statistic of these nT variables.

Our approach allows us to relax several distributional assumptions made in existing methods,
such as i.i.d. random variables or global log-concavity of f . We also provide high probability
guarantees for the efficiency of our algorithm without assuming oracle access to the CDF F or
when using non-exact sampling methods. Our key observation is that the values of many of
the random variables contain little information about X(k,n), thus not all need to explicitly be
sampled. Our algorithm achieves o(n) time complexity in more general settings than those of
previous literature.

1

1 Introduction

Order statistics, and the need to sample or understand their behavior, arise in problems where we
wish to control or analyze extremal behavior. For example, if we wish to understand the distribution
of maximum queue lengths, or how robust using the median of a sub-population is as a metric to
describe a larger population, the distribution of order statistics play a large part. Similarly, processes
based on extrema of variables also play a role, such as in rank-based auctions, or the minimum time
it takes for the first component (such as a battery) in a system to fail. Many of these applications
require a large number of order statistic samples for either Monte Carlo simulation, or estimating
functions–e.g. expectation, variance–of the order statistics. We can additionally estimate more
complex functions, such as the probability of exceeding a threshold maximum queue length or the
expected revenue from a sponsored search auction. Our objective is to derive a sampler for the
kth order statistic X(k,n) ∼ Fk,n —the kth smallest value— of i.i.d., real valued random variables
X1, . . . , Xn ∼ F that is efficient with respect to the input parameters the number of variables n, the
desired order statistic k, and the properties of the underlying cumulative distribution function F .

1.1 Our Contributions

Many efficient sampling methods make rather limiting assumptions on the of properties of F , such
as generalized log-concavity (GLC) of f , Lipschitz continuity of F , or even continuity of f , which
may often not hold globally. Our meta-algorithm, which samples X(k,n) conditional on X(k,n) falling
within a small interval, naturally addresses this issue by necessitating that some of these conditions
hold locally. For example, the standard Cauchy distribution is only log-concave in the interval
(−1, 1) and the Betaα,β distribution for α, β < 1 is Lipschitz continuous outside of its endpoints.
Our procedure has additional advantages, such as relaxing the common continuous or identically
distributed assumptions. Furthermore, in practice, it is often difficult to obtain exact samples
from Fk,n–a complication that arises when an approximation F̃ is used instead of F . We instead
provide inexact sampling procedures with sample complexity results for Monte Carlo simulating
from approximate distribution F̃k,n that is ϵ-close in total variation distance: δTV (f̃k,n, fk,n) < ϵ.
The main contribution of this work is a meta-algorithm that samples from F̃k,n in time sub-linear in
n and k by separating the task of sampling X(k,n) into a discrete and continuous component.

In the following section, we describe related works. In section 3, we more precisely define the
problem of interest, our assumptions, our goals, related solutions, and provide an overview of our
proposed discrete and continuous breakdowns of the order statistic sampling problem. In sections 4
and 5, we flesh out our solution for the proposed discrete sub-problem and continuous sub-problems,
respectively. Additionally, we discuss a procedure to optimize parameters that guarantee efficient
run-time of our meta-algorithm. We also provide experiments to compare the efficiency of various
methods and generalize our methods to the heterogeneous and empirical CDF settings. Finally, in
section 6, we provide a summary of our findings.

2 Related Work

It is well known that X(k,n) ∼ Fk,n can be sampled via Beta inverse transform sampling (BITS) as
F−1(Betak,n−k+1). Morrison 2019 [1] extends this strategy to the independent but not i.i.d. setting
when each of the F−1

i are available or computed a priori. However, F−1 may be prohibitively difficult
to compute for arbitrary distributions as argued in Devroye 1986 [2], though we show that this can
be alleviated assuming Lipschitz continuity of f . As such, the primary constraint in the literature is
the difficulty of computing F−1. Most of these methods operate under only oracle access to f , F , or

2

samples from F . Several methods also assume continuity or other structural properties of F . As
such, it may be advantageous to relax these assumptions and minimize the number of potentially
expensive operations, such as querying F−1 or even F itself–e.g. Gaussian distributions.

As order statistics themselves follow some distribution Fk,n, we may directly invoke a black-box
sampler from R1, for which many have been proposed and studied in literature. Most of these
methods use the concept of accept-reject sampling. Gilks-Wild 1992 [3] details an adaptive rejection
sampling algorithm for efficient sampling from an arbitrary log-concave density f . Gilks 1995 [4],
Hörmann 1995 [5] and Evans 1998 [6] expand the setting of under which these transformed density
samplers (TDR) were efficient from under log-concavity to under Tc-concavity, requiring essentially
O(1) evaluations of f . Görür 2011 [7] extended this further to distributions that can be represented
as the sum of Tc-convex and Tc-concave functions. Ahrens 1995 [8] similarly only required that the
distribution f be a piece-wise monotonic function with a finite number of pieces. More recently,
Markov Chain Monte Carlo (MCMC) methods have shown to be efficient under similar log-concavity
assumptions (Mangoubi 2017 [9], Dwivedi 2018 [10], Chen 2019 [11]). In the work most similar in
flavor to our own, (Hormann 2002) [12] applies their efficient sampler to order statistic distributions,
showing that under the i.i.d. setting, Tc-concavity of f implies Tc-concavity of fk,n.

Aside from these universal samplers, Devroye 1986 [2, Chapter Discrete Random Variates]
proposes an O(log n) method to sample from the maximum (or minimum) of i.i.d. random variables
that requires minimal pre-computation and notably does not require GLC f . They also provide
efficient O(1) order statistic samplers for particular underlying distributions, such as the beta
distribution. Each of these methods are efficient under various settings depending on the availability,
properties of, and cost of sampling from or evaluating f , F , and F−1.

3 Overview

As stated in the introduction, the main problem of interest is to sample the kth order statistic from
n independent random variables. For simplicity’s sake, will assume Xi

i.i.d.∼ F , continuity of F , and
the RRAM computation model. We explicitly state the assumptions and pre-computations made
to obtain a certain sampling cost as a function of the number of samples from F and queries to f ,
F , and F−1 required. Using cs, cf , cF , c−1 to denote the costs of these operations, we describe the
initialization and sampling costs of our procedure. After stating our algorithm in this setting, we
generalize our approach to non-continuous F , heterogeneous Xi’s, and the use of an approximated
CDF F̂N . To be more explicit about our problem of interest, we note that exact sampling may
sometimes be infeasible. Sources of error may arise due to prohibitively large cF or c−1, necessitating
use of F̂N–the empirical CDF constructed from N samples. An additional source of error emerges
from the use of approximate black-box samplers, such as BITS. As such, our objective is to sample
from an approximate order statistic distribution F̃k,n such that δTV (fk,n, f̃k,n) < ϵ.

3.1 Solution Overview

Sampling from Fk,n can be challenging as the input parameters n and k could be large or the function
F can be complicated. Sampling instead from FkT ,nT ,BT

might be computationally much easier,
where kT ≪ k, nT ≪ n, and FT –the conditional distribution of F within a small region BT –is more
well behaved than F . Here, FkT ,nT ,BT

denotes the distribution of the kT ’th order statistic of nT
i.i.d. random variables with distribution FT . With this observation, our meta-algorithm splits the
order statistic sampling task into two parts: a discrete sampler that samples (kT , nT , FT), and a
continuous sampler that samples from Fk,n (or F̃k,n).

3

Algorithm 1 Meta-Algorithm for Sampling the kth Order Statistic of i.i.d. Xi’s
Require: n, k,m ∈ N, F : R → [0, 1], (Bj)j∈[m]) ∈ [R,R]m, DiscreteSampler : (N × N × F × [R,R]m) →

(N× N× F), ContinuousSampler : (N× N× F)→ R
Ensure: X(k,n), a sample of the kth order statistic of X1, . . . , Xn

i.i.d.∼ F .
1: nT , kT , FT ← DiscreteSampler(n, k, F, (Bj)j∈[m])
2: return ContinuousSampler(nT , kT , FT)

Taking as n, k, F and a set of m disjoint, contiguous buckets B1, . . . , Bm that span the support of
F , our discrete sampler simplifies sampling from Fk,n into sampling from FkT ,nT ,BT

. To do this, we
define the random variable BT to be the bucket in which X(k,n) takes value in. The algorithm then
samples bucket Bj with P(X(k,n) ∈ Bj) ≡ P(BT = Bj). Conditional on BT = Bj , we then sample
nT and kT according to pkT ,nT |BT=Bj

. Motivating our discrete sampler is that by conditioning
on the number of variables to the left of, within, or to the right of BT , we can avoid sampling a
large number of random variables. This allows us to sample from a simpler local order statistic
distribution for a small number of variables, as opposed to the more complex global distribution for
a large number of random variables.

Taking as input nT , kT , and FT , the continuous sampler obtains a sample of X(kT ,nT ,BT) ∼
FkT ,nT ,BT

. Several suitable algorithms are described in the related works section for sampling from
the unconditional distribution Fk,n, though these apply to the conditional case as well. These
methods can be classified into two categories: those following the direct sampling paradigm (DSP)
versus the order statistic sampling paradigm (OSSP). In DSP, each of the nT random variables
are sampled, usually via rejection sampling or a black-box conditional sampler (CS) from FT , and
the kT th largest is returned. In OSSP, we instead attempt to sample from FkT ,nT ,BT

directly,
usually either through BITS or CS. DSP returns samples from FT without evaluating F at the cost
of efficiency, requiring nT samples from FT . In contrast, OSSP algorithms can return samples in
effectively constant O(1) time under some assumptions on FT and access to F . When using F̃ instead
of F , these methods incur some additional error must be analyzed and bounded w.r.t. the error of
F̃ . We note that our choice of metric of total variation distance has the useful properties of additive
error across buckets and also TV -closeness implying bounded error on the empirical expectation of
E(g(X)) for any arbitrary bounded, continuous function g. As TV -closeness is rather strict, showing
closeness for other metrics, such as the Kolmogorov-Smirnov Statistic δKS , Wasserstein δEMD, or
KL Divergence δKL, would require looser assumptions on F and less computation.

There exists an inherent trade-off between the discrete and continuous samplers. The performance
of the continuous sampler increases with respect to nT and the complexity of FT while the discrete
sampler must be run at a greater depth or granularity to reduce these quantities. We discuss ways
to strike an optimal balance between the two and give asymptotic guarantees on the near-optimal
sampling time complexity under various assumptions.

4 Discrete Sampler

In this section, we flesh out the a proposed sampler for the discrete problem as well as its time and
space complexities. In order to do that, first define some key objects.

Definition 1. Let X1, . . . , Xn
i.i.d.∼ F . Let x = (x0, . . . , xm) with −∞ = x0 < x1 < . . . < xm =∞

such that regions of the form [xj−1, xj) ≡ Bj denote a partition of Supp(F).

In general, x0 and xm are the left and right support endpoints of F , but we write −∞ and ∞
for simplicity. With the buckets defined, we introduce two important meta-variables.

4

Definition 2. Let x define our contiguous bucket partition. Letting BT be the random variable
denoting which bucket that X(k,n) resides in, we define the random variables

nT (x) =
m∑
j=1

n∑
i=1

1X(k,n)∈Bj1Xi∈Bj |X(k,n)∈Bj
and n−T =

m∑
j=1

n∑
i=1

1X(k,n)∈Bj1Xi<xj−1|X(k,n)∈Bj
(1)

to be the number of variables that fall into and to the left of BT . Let µj = E
(
nT | X(k,n) ∈ Bj

)
.

Note that the event X(k,n) ∈ BT is equivalent to {n−T < k} ∩ {n−T + nT+ ≥ k}. Furthermore,
kT = k − n−T from which we invoke the following theorem.

Theorem 4.1. The distribution of X(k,n) given kT = k − n−T , nT , and X(k,n) ∈ BT is FkT ,nT ,BT
.

With a reasonable selection of BT , we can prune a large number of random variables and simplify
our distribution of interest with only a small amount of computation.

4.1 Discrete Problem Solution

We now provide our discrete sampler. At a high level, the discrete sampler takes as input n, k, F ,
contiguous buckets defined by x that span the domain of F and as a one-time overhead, our sampler
computes the (conditional) distribution tables ω for the distribution of BT and pnT ,kT |BT=Bj

as the
joint conditional distribution of nT given BT = Bj for all BT ∈ {B1, . . . , Bm}. From these tables,
the algorithm then samples BT , nT , and kT .

Algorithm 2 Table-based initializer for the kth order statistic.
Require: n, k ∈ N are the input number of random variables and the desired order statistic, F : R→ [0, 1]

is the underlying distribution of the n random variables, x ∈ Rm+1 is an m-bucket partition of R.
Ensure: ω ∈ [m]→ [0, 1],pnT ,kT |BT=Bj

∈ [n]× [k]→ [0, 1]∀j ∈ [m], the probability mass function associated
with the kth order statistic across buckets B1, . . . , Bm and the conditional distribution of nT , kT given
BT = Bj .

1: ωj = βk,n−k+1([F (xj−1), F (xj))
2: for j ∈ [m]: do

3: pnT ,kT |BT=Bj
(nT = n′, kT = k′) =

P([
∑n

i=1 1Xi∈Bj]=n′,[
∑n

i=1 1Xi<xj−1]=k−k′)

P([
∑n

i=1 1Xi<xj−1]<k,[
∑n

i=1 1Xi≤xj]≥k)
∀n′ ∈ [n], k′ ∈ [k]

4: end for
5: return ω,pnT ,kT |BT=Bj

4.2 Initialization Complexity Analysis

Given a bucketing x, the table initialization requires computing two sets of probability distributions;
ω and pnT ,kT |BT=Bj

. Computing ω only requires evaluating F at each xj–which has cost O(cFm)–and
setting each ωj = Betak,n−k+1([F (xj)− F (xj−1)]). The conditional probability tables pnT ,kT |BT=Bj

follow a truncated multinomial distribution with n trials and probability vector [F (xj−1), F (xj)−
F (xj−1), 1− F (xj)]. We note that in order for X(k,n) to reside in BT = Bj , we require strictly fewer
than k random variables to the left of xj−1 and at least k to the left of xj . Hence, we prune all
combinations of n−T and nT such that this condition is violated and normalize accordingly. Having
already computed each F (xj), constructing each of the m probability tables requires O(nk) time and
memory. Hence, the total time complexity of table initialization must be cω + cp = O(mnk + cFm).

5

4.3 Sampling Complexity Analysis

After the initialization overhead, we must compute the time complexity of obtaining each sample. We
note that we have already stored in memory the (conditional) distributions needed in the initialization
phase. To actually draw samples from these tables will require time proportional to the sum of the
entropy of each of the distributions.

Theorem 4.2. Sampling an ordered tuple of (nT , kT , BT) has time complexity O(H(ω)+E(log nT)).
Under the optimal bucketing, this simplifies to O

(
logm+ log n

m

)
.

We are interested in E(log nT) and H(ω) and their relationship with m and the bucketing x.
We upper bound the former term by logE(nT) and the latter by logm. The following theorem
characterizes the behavior of E(nT) under the optimal bucketing as a function of m.

Theorem 4.3. Under the optimal bucketing x, we have that E(nT) = O(n
m).

This slow rate is due to the increasing uniformity of F within each of the shrinking buckets. For
smaller values of m where F conditional to BT is less uniform, we may obtain significantly faster
than O(n

m) rate of improvement, though showing the exact rate is difficult. We prove and discuss
these results further in the appendix.

4.4 Cost of Computing a Bucketing

The previous results are contingent on being able to compute the optimal bucketing x. As such, an
important question is how to compute a suitable x, and similarly, what the cost cx of obtaining such
a bucketing is. The following theorem allows us to obtain an (approximately) optimal bucketing.

Theorem 4.4. Define βa,b([x, y)) to be the mass of bucket [x, y) under the F -transformed Betaa,b
distribution. Given partitioning x, define ωj = P(X(k,n) ∈ [xj−1, xj)) = βk,n−k+1([xj−1, xj)).
Similarly, let ϕj = βk−1,n−k+1([xj−1, xj)) and ψj = βk,n−k([xj−1, xj)). Then:

ωjµj = n [ωj − F (xj−1)ϕj − (1− F (xj))ψj] & E(nT) = n
m∑
j=1

[F (xj)ψj − F (xj−1)ϕj] (2)

We have established an analytical solution for E(nT) as the sum of m terms, each only depending
on adjacent thresholds in x. Taking first order conditions, we obtain a recursive formula in terms of
f, F, xj−1, xj , xj+1 that yields the optimal bucket selection. Computing x by guessing a proposal x1
and recursively solving the first order conditions requires many queries F or m calls to F−1. In cases
where cx is restrictively large, we can instead only perform m calls to F with N samples to estimate
F and F−1 using the empirical distribution F̂N yielding a cost of cx,η = O(cFm+ csN). We can
give high probability error bounds of this approximately optimal bucketing via the DKW inequality.

Theorem 4.5. Let F̂N (x) = 1
N

∑N
i=1 1Xi≤x denote the empirical CDF. Then for N = Ω(n4m2η−1 log 1

α),
then P(|Ex(nT) − Ex̂(nT)| < η) ≥ 1 − α, where x and x̂ are the optimal bucketing and estimated
optimal bucketing under F̂ respectively.

5 Continuous Problem

In this section, we present several algorithms for obtaining samples from FkT ,nT ,BT
that, to our

knowledge, are the most efficient algorithms that work under their listed assumptions and goals. In

6

Sampler Assumptions Fixed Cost Unit Expected Cost

Vanilla RS (DSP) Ability to sample from F N/A O(cs(
√
n+ n

m
)) when k = Θ(n),

else O(n)

CS (DSP) See Table 2 O(nT γCS(FT)) O(Ex(nT γCS(FT)))

BITS (OSSP) Access to F , fT is LT -Lipschitz
& L′

T -log Lipschitz O
(
cF log(lognLT ϵ−1

logL′
T

)
)

O
(
cFEx

(
log(lognLT ϵ−1

logL′
T

)
))

CS (OSSP) See Table 2 O(γCS(FkT ,nT ,BT)) O(Ex(γCS(FkT ,nT ,BT)))

Table 1: We list possible continuous sampler (CS) algorithms in approximate order of least to most
restrictive assumptions. The conditional sampler methods are a black-box algorithm to sample
from a truncated distribution; FT under DSP and FkT ,nT ,BT

under OSSP. γCS denotes a conditional
sampler algorithm dependent cost term that we characterize in Table 2.

Sampler Assumptions Fixed Cost γCS(F) Overhead ζCS(F)

Tabular (Ahrens
1995) Access to f , finite number of modes O((logM +cf)(1+

1
M
))

Computing M construction
points

TDR (Hormann
1995, 2002) Access to f , GLC f O((logM+cf)(1+

1
M2))

Computing M construction
points

MCMC Assumptions algorithm dependent,
usually access to f with GLC f

See Theorem 5.4 Markov chain mixing time

Table 2: We describe some conditional samplers, where M is the number of construction points
used. When applying these methods under OSSP, there are O(mnk) combinations of nT , kT , BT

leading to ζCS(F)—either O(Mmnk) construction points required or O(mnk) chains to mix. Larger
M corresponds to larger acceptance probability which may be necessary for more complicated
distributions. Additionally, as we require F when evaluating fk,n, the cost coefficient becomes
(cf + cF) instead of cf .

particular, we state whether they follow the direct or OSS paradigm, the assumptions made in each,
the cost of sampling from FkT ,nT ,BT

for fixed kT , nT , FT , and the cost of sampling from FkT ,nT ,BT
in

expectation under the optimal m-bucketing. We relegate the implementation details to the appendix.
To put the merits of bucketing in context of our proposed continuous samplers, there are three

primary advantages. First, bucketing makes each sampler more flexible with respect to necessitating
only assumptions for the local FT as opposed to the global F . Second, the cost and overhead of
the conditional samplers and BITS become a function of the complexity of the local distributions
FT , as opposed to F . As m grows large, we can select finer-grained x with FT and FkT ,nT ,BT

both
approaching the simple uniform distribution. For example, this can significantly improve both the
asymptotic and non-asymptotic convergence rate of the root-finding protocols used in BITS or
reduces the number of construction points required in the tabular and TDR methods to achieve a
desired acceptance probability. Lastly, we can allow F to be non-continuous distributions by placing
point masses in their own bucket. When placing multiple (possibly infinitely many) such point
masses in the same bucket, there exist efficient CS methods to handle purely discrete distributions.

5.1 Approximate Continuous Sampling with Probabilistic Guarantees

Similar to computing an η-optimal bucketing using F̂N , it may be tempting to replace F with F̂N (or
its linearly interpolated version to preserve continuity) to remove the sampling cost dependency on
cF in methods which require it. Surprisingly, it turns out these methods remain largely unchanged for

7

Sampler Assumptions Sample Complexity Expected Cost

CS (OSSP) Ability to sample from F , see Table 2 N = Ω(n2ϵ−1 log 1
α
) O(cf (γCS(F̂

N
k,n)))

BITS Ability to sample from F , fT is LT -Lipschitz N = Ω(ϵ−2 log 1
α
maxT L2

T) O (Ex(logNT)))

Table 3: We describe the modifications required when using F̂N in two continuous samplers. We
give the sample complexity and corresponding total sampling expected cost in order to achieve
P(δTV (fk,n, f̂k,n) < ϵ) ≥ 1 − α where f̂k,n(x) = n!

(k−1)!(n−k)!f(x)F̂
k−1
N (1 − F̂N)n−k. Both methods

replace access to F with the ability to sample from F .

Sampler Total Overhead Total Sampling Cost

Vanilla RS (DSP) cx, cω, cp
O(logm+ cs

√
n) if k = Θ(n), else O(logm+ csn)

for optimal m = O(
√
n) in either case

CS (DSP) cx, cω, cp, CS overhead of
∑

T ζCS(FT) O(logm+Ex(nT γCS(FT))) for optimal m = O(n)

BITS (OSSP) cx, cω, cp O
(
logm+ Ex

(
lognT + cF log(lognLT ϵ−1

logL′
T

)
))

CS (OSSP) cx, cω, cp, CS overhead of∑
n′,k′,B′ ζCS(Fn′,k′,B′)

O(logm+ Ex(γCS(FkT ,nT ,BT)))

F̂N -CS (OSSP)
cx, cω, cp, csn2ϵ−1 log 1

α
, CS overhead

of
∑

n′,k′,B′ ζCS(F̂
N
k′,n′,B′)

O(logm+ Ex(γCS(F̂
N
kT ,nT ,BT

)))

F̂N BITS (OSSP) cx, cω, cp, csϵ−2 log 1
α
maxT L2

T O(logm+ Ex (logNT))

Table 4: We list the optimal total overhead and sampling costs of the various continuous samplers.

a sufficiently large N . To our aid is the the DKW inequality which gives high probability guarantees
on δKS(F, F̂N), the maximum vertical error of the empirical distribution. For the conditional sampler
under OSSP, bounded δKS is sufficient to bound δTV (fk,n, f̂

N
k,n).

Theorem 5.1. Let F̂N denote the empirical distribution of F . Then, for N = Ω(n2ϵ−1 log 1
α), we

have P(δTV (fk,n, f̂
N
k,n) < ϵ) ≥ 1− α.

Similarly, bounded δKS implies the same bound on the maximum horizontal error of the inverses
of F and F̂N . This guarantee allows for a simple extension to BITS. In fact, it may often be more
computationally efficient and flexible to implement BITS using F̂ over F , so long as the cost of
sampling N times from F is not too large. As F̂N is piecewise linear, the time complexity of inverting
it is upper bounded by O(H(F̂N)) = O(logN)—or, within a bucket, O(logNT) = O(

∑N
i=1 1Xi∈BT

).
This may significantly smaller than cF , especially considering the lack of dependency on the Lipschitz
and log-Lipschitz constants. In a similar vein, we no longer require the log-Lipschitz continuity
assumption which allowed for the super-linear convergence rate of the underlying root-finding
protocols. This resolves much of the literature’s frequent criticism of the impracticality of the BITS
algorithm, as we no longer have to invert F explicitly.

5.2 Balancing with the Discrete Sampler

We describe the optimal choice of m to balance the discrete and continuous sampler costs, the
overhead costs, and resultant total sampling cost under the optimal bucketing.

In Table 4, we state the total overhead and sampling costs of each algorithm. Refer to Tables 1,
2, and 3 for the appropriate assumptions. Note that optimal m generally depends on F but can be
computed explicitly in the case of vanilla rejection sampling and conditional sampling under DSP.
We note that there are several intricacies within each algorithm, for example the selection of x under

8

OSSP, as larger m may improve the cost marginally for some F but drastically for others. Similarly,
the inverse relationship between the overhead and sampling costs is accentuated under conditional
sampling algorithms due to the negatively correlated γCS and ζCS .

5.3 Extension to Heterogeneous Random Variables

We have so far assumed i.i.d. random variables, but in this section, we consider the more general case
of Xi ∼ Fi for i ∈ [n]. Our meta-algorithm solution retains a similar structure. We first partition R1

into buckets x, invoke the discrete sampler to obtain a simpler order statistic sampling sub-problem,
and then apply the continuous sampler on said sub-problem. There are several modifications we
must make to account for heterogeneity.

Algorithm 3 Meta-Algorithm for Sampling kth Order Statistic of heterogeneous Xi’s
Require: n, k ∈ N, Fi : R→ [0, 1] for i ∈ [n], GenDiscreteSampler : (N× (Fi)i∈[n], [R,R]m)→ (N× (Fi)i∈[n])

GenContinuousSampler : (N× (Fi)i∈[n])→ R
Ensure: X(k,n), a sample of the kth order statistic of X1, . . . , Xn.
1: kT , (Fi)i∈XT

= GenDiscreteSampler(k, (Fi)i∈[n], (Bj)j∈[m])
2: return GenContinuousSampler(kT , (Fi|BT

)i∈XT
)

5.3.1 Heterogeneous Discrete Sampler

In the heterogeneous setting, we need additional information on which of the Xi fell within BT

which we denote by XT . As the number of possible XT is exponential in n, we avoid pre-computing
its distribution as we did for pkT ,nT |BT

in the i.i.d. case. Furthermore, ω no longer follows an
F -transformed beta distribution. The latter problem of computing ω can be solved with a simple
O(mnk) time dynamic program that computes Fk,n(x) for each x ∈ x. The problem of sampling XT

is more involved. At a high level, for each j ∈ [m], we first pre-compute the joint distribution of
pnT ,kT |BT=Bj

which can be done via dynamic programming in O(mnk) time. For each (kT , nT , BT),
we pre-compute relative weights P(Xi ∈ BT | kT , nT) using Bayes’ rule and pnT ,kT |BT

. Using these
weights, we then invoke a weighted random sampling algorithm with desired sample size nT , yielding
time complexity O(H(ω) + Ex(nT log n

nT
)) = O(logm+ log nEx(nT)).

5.3.2 Heterogeneous Continuous Sampler

As there are n different distributions, the time complexity of the continuous sampler will increase
somewhat. For example, in rejection sampling, the bottleneck becomes the maximum number of
samples from Fi required to sample from BT , weighted by P(Xi, X(k,n) ∈ BT). In CS under DSP,
the pre-computations must be performed for each Fi. In CS under OSSP, even if each of the fi’s
satisfy the assumptions required for efficient sampling, fk,n may not. For example, letting the fi’s
be uniform distributions over disjoint intervals, we cannot have GLC fk,n. As for BITS, Morrison
2019 [1] details how to generalize BITS to the heterogeneous case, but requires evaluating each
F−1
i . Estimating these using the same root-finding protocol as in the i.i.d. version of BITS requires
O(E(nT)) expensive inversions. This can be alleviated somewhat by using empirical distributions,
though the error analysis is complex and left as future work.

5.4 Experiments

We conduct two sets of experiments using vanilla RS, CS under DSP, and BITS. The first experiment
compares the entropy and implied m of the (approximately) optimal bucketing against the expected

9

Figure 1: We provide experiments to compare the relative cost of each continuous sampler against the
optimal bucketing (in terms of number of samples from F required, evaluations of f , and evaluations
of F in the vanilla RS, CS, and BITS methods respectively). We also show a visual representation of
the optimal bucketing for m = 40 to highlight the possible good synergies between DSP and OSSP
methods.

number of operations to sample X(k,n). The second experiment compares the optimal thresholds
for fixed m = 40 and using n = 99, k = 50, and F = Beta0.3,0.3. From these experiments, we see
that DSP and OSSP methods can complement one another. DSP methods are efficient in regions
where Fn,k is sparse and F is dense, such as x close to 0 or 1 in our experiments. Conversely, the
performance of BITS is less dependent on nT and kT and primarily depend on the non-linearity of
FT . As such, BITS is efficient where FT is close to uniform, such as x close to 1

2 in our second set of
experiments. Using a hybrid approach where we use both DRP and BITS methods where they are
more efficient can achieve significantly improved cost over using one method exclusively.

6 Conclusion

We have provided a meta-algorithm to sample X(k,n) that consists of two pieces: the discrete sampler,
which subdivides the original problem into smaller, simpler versions of the order statistic sampling
problem, which is then solved by a continuous sampler. More specifically, we constructed bucketing
x such that the discrete sampler minimizes the expected amount of work to be done when running
the continuous sampler on the resultant sub-problems. The primary advantages of our bucketing
approach are the improved time complexity and flexibility of using the continuous samplers, with
the added bonus of good synergies between various samplers. Furthermore, we relaxed several
requirements on F—for example, by using F̂N to reduce the number of evaluations of F , or by
dropping the identically distributed assumption. Finally, we discussed how to balance the cost of
the discrete and continuous samplers.

10

7 Appendix

In this section, we provide proofs for the theorems, stated efficiency, and sample complexity results
in the main body. We also give additional intuition and implementation details for each algorithm.

7.1 Discrete Problem

Theorem 4.1. The distribution of X(k,n) given kT = k − n−T , nT , and X(k,n) ∈ BT is FkT ,nT ,BT
.

Proof. We use the observation that X(k,n) ∈ BT is equivalent to {n−T < k} ∩ {n−T + nT+ ≥ k}. As
we are in the i.i.d. setting, the conditional distribution of the random variables within an interval
is independent of the number of random variables left of, within, and to the right of this interval.
Hence, the distribution of X(k,n) conditional on X(k,n) ∈ BT , nT , and kT is simply FkT ,nT ,BT

.

Theorem 4.2. Sampling an ordered tuple of (nT , kT , BT) has time complexity O(H(ω)+E(log nT)).
Under the optimal bucketing, this simplifies to O

(
logm+ log n

m

)
.

Proof. The table sampling process to determine BT , nT , kT . As the work done from sampling each
variable are independent and additive, the expected run-time is simply the sum of their expected
run-times. The time required to sample from these distributions are their entropy, which are H(ω)
and H(pnT ,kT |BT

) = H(pnT |BT
) +H(pkT |nT ,BT

) respectively. The first term is the one that appears
in the theorem statement. The second term we will address with the following lemma.

Lemma 1. To upper bound the sampling time of nT and kT given nT , we take the information
theoretic limits.

H(pnT |BT
) = O(E(log nT)) and E(H(pkT |nT ,BT

)) = O(E(log nT)) (3)

Proof. We first show an upper bound of O(E(log nT)) of the sampling time of nT , namely H(pnT |BT
).

The overall idea is to upper bound the entropy of H(nT | BT) by the entropy of a related maximal
entropy distribution. In particular, we use the geometric distribution which is the maximal entropy
distribution for all unbounded, positive integer-valued distributions with fixed mean. Letting
µj = E(nT | BT = Bj), the entropy of the geometric distribution with parameter r such that
1−r
r = µj—or equivalently r = 1

1+µj
—is given by:

−(1− r) log(1− r)− r log r
r

(4)

Plugging in our value of r and after some algebra, we obtain:

H(pnT |BT=Bj
) ≤ H

(
Geom

(
·; 1

µj + 1

))
= (µj + 1) log(µj + 1)− µj log(µj) = O(logµj) (5)

We need not worry about blow-up behavior for when µj is close to 0 as we’re guaranteed that
µj ≥ 1 as nT ≥ 1. Plugging this back in we obtain:

H(pnT |BT
) =

m∑
j=1

ωjH(pnT |BT=Bj
) = O

 m∑
j=1

ωj log(µj)

 = O (E(log nT)) (6)

11

For the upper bound on kT , we have:

E(H(pkT |nT ,BT
)) ≤

∑
nT=n′,BT=Bj

P(nT = n′, BT = Bj)H(pkT |nT=n′,BT=Bj
) (7)

≤
∑

nT=n′,BT=Bj

P(nT = n′, BT = Bj) log nT since kT ≤ nT (8)

= O(E (log nT)) (9)

To describe the optimal bucketing asymptotic behavior, we require the following few theorems.

Theorem 4.3. Under the optimal bucketing x, we have that E(nT) = O(n
m).

Proof. For the optimal choice of x and continuous F (no point masses), one can show that E(nT)
decreases to 1 as m grows large for any fixed n and k. Assume the uniform bucket partition,
where F (xj)− F (xj−1) =

1
m for all j. Using continuity of F , we have that as m→∞, both Fk,n

and FXi|X(k,n)∈Bj
are approximately linear functions. Then, one can bisect any bucket Bj with

contribution ωjµj to have contribution approximately 2(
ωj

2)(
µj

2) =
ωjµj

2 . Bisecting each bucket in the
uniform m partition will consequently yield approximately factor of 2 improvement in E(nT)–hence
a O(n

m) rate of convergence of E(nT). Since the optimal partition is optimal over all x, including
the uniform, we have that the optimal partition must also have asymptotic convergence rate to 1 of
O(n

m).

The asymptotic rate of decay of E(nT) is inversely proportional to m. However, this slow rate is
due to the increasing uniformity of F within each of the shrinking buckets. For smaller values of m
where F conditional to BT is less uniform, we may obtain significantly faster than O(n

m) rate of
improvement, though showing the exact rate is difficult. For the simple case of m = 3, we can show
that E(nT) = o(n).

Theorem 4.3.1. For any n and k, we there exists x with m = 3 such that E(nT) = o(n).

Proof. We assume F is uniform WLOG. Let x = (0, 12 − x,
1
2 + x, 1). We simply need to show that

E(nT) = o(n) for some choice of x. Let px = P(X(k,n) ∈ B2) = P(X(k,n) ∈ [12 − x,
1
2 + x)). We first

prove the following useful bound:

E(nT) ≤ n(1− px) + (4xn+ 1)px (10)

12

This follows from:

E(nT) = µ1
1− px

2
+ µ2px + µ3

1− px
2

(11)

≤ n(1− px) + µ2px (12)

≤ n(1− px) +
∫ 1

2
+x

1
2
−x

[
1 + E(Binom

k−1,
z− 1

2+x

z

+ E(Binom
n−k,

1
2+x−z

1−z

]
dFk,n(z) (13)

= n(1− px) +
∫ 1

2
+x

1
2
−x

[
1 +

(k − 1)(z − 1
2 + x)

z
+

(n− k)(12 + x− z)
1− z

]
dFk,n(z) (14)

≤ n(1− px) +
∫ 1

2
+x

1
2
−x

[
1 +

2x(k − 1)
1
2 + x

+
2x(n− k)

1
2 + x

]
dFk,n(z) (15)

≤ n(1− px) +
∫ 1

2
+x

1
2
−x

[
1 +

2x(k − 1)
1
2

+
2x(n− k)

1
2

]
dFk,n(z) (16)

≤ n(1− px) +
∫ 1

2
+x

1
2
−x

[1 + 4xn] dFk,n(z) (17)

= n(1− px) + (4nx+ 1)

∫ 1
2
+x

1
2
−x

dFk,n(z) (18)

= n(1− px) + (4nx+ 1)px (19)

In order to show that E(nT) goes to 0, we begin by dividing both sides of (10) by n.

E(nT)
n

≤ (1− px) + 4xpx +
px
n

(20)

We need to show that each of these terms goes to 0 as n grows large. The last term is upper bounded
by 1

n and hence goes to 0. Similarly, the middle term 4xpx is upper bounded by 4x and shrinks to 0
as long as x = o(1). The form of the first term suggests applying a concentration inequality type
result to upper bound the probability of the tail. For large n, we can approximate Fk,n as a Gaussian
with mean k

n = 1
2 and variance k(n−k+1)

(n+1)2(n+2)
= 1

4n+8 , and use the corresponding Gaussian tail bounds.

1− px ≤ 2 exp (−2(4n+ 8)x2) ≤ 2 exp (−8nx2) (21)

Hence, as long as x = ω(1√
n
), the 1− px term tends to 0. Taking the intersection of the family of x

of o(1) given by the middle term and ω(1√
n
) given by the left term, we obtain that E(nT) = o(n).

We also remark that this analysis works for any k as the variance of X(k,n) and its Gaussian
approximation will be strictly smaller, hence leading to a faster decay of 1− px. For example, the
minimum and maximum will have variance on order of 1

n2 , allowing E(nT) = o(n) for any x between
o(1) and ω(1n).

Theorem 4.4. Define βa,b([x, y)) to be the mass of bucket [x, y) under the F -transformed Betaa,b
distribution. Given partitioning x, define ωj = P(X(k,n) ∈ [xj−1, xj)) = βk,n−k+1([xj−1, xj)).

13

Similarly, let ϕj = βk−1,n−k+1([xj−1, xj)) and ψj = βk,n−k([xj−1, xj)). Then:

ωjµj = n [ωj − F (xj−1)ϕj − (1− F (xj))ψj] & E(nT) = n
m∑
j=1

[F (xj)ψj − F (xj−1)ϕj] (2)

Proof. Recall the definitions of ωj and µj :

ωjµj = P(X(k,n) ∈ Bj)E(
n∑

i=1

1Xi∈Bj |X(k,n)∈Bj
) (22)

For notational simplicity, let s = F (xj−1) and t = F (xj). Furthermore, let U(k,n) denote the density
of the kth order statistic of n i.i.d. Uniform (0, 1) random variables (which is a βk,n−k+1 distribution).
Using the same notation as in the theorem statement, we have:

ωjµj =

∫ xj

xj−1

[
1 + E(

n∑
i=1

1Xi<x|X(k,n)=x) + E(
n∑

i=1

1Xi>x|X(k,n)=x)

]
dFk,n(x) (23)

=

∫ xj

xj−1

[
1 + E(Binom

k−1,
F (x)−F (xj−1)

F (x)

) + E(Binom
n−k,

F (xj)−F (x)

1−F (x)

)

]
dFk,n(x) (24)

=

∫ t

s

[
1 + E(Binomk−1,x−s

x
) + E(Binomn−k, t−x

1−x
)
]
dU(k,n)(x) (25)

=

∫ t

s

[
1 +

(k − 1)(x− s)
x

+
(n− k)(t− x)

1− x

]
dU(k,n)(x) (26)

= ωj +

∫ t

s

[
(k − 1)(x− s)

x
+

(n− k)(t− x)
1− x

]
β(x; k, n− k + 1)dx (27)

= ωj +

([∫ t

s

(k − 1)(x− s)
x

β(x; k, n− k + 1)dx

]
+

[∫ t

s

(n− k)(t− x)
1− x

β(x; k, n− k + 1)dx

])
(28)

Here, the third equality follows from the fact that Fk,n is simply the F−1 transformed U(k,n)

distribution, for which we can transform the sample space using F−1 and remove F from the
expression entirely. We first simplify the left integral term, which corresponds to the expected
number of random variables to the left of X(k,n) but still inside Bj :∫ t

s

k(x− s)
x

β(x; k, n− k + 1)dx (29)

=
n!k

(k − 1)!(n− k)!

[∫ t

s

x− s
x

xk−1(1− x)n−kdx

]
(30)

=
n!k

(k − 1)!(n− k)!

[∫ t

s
xk−1(1− x)n−kdx− s

∫ t

s
xk−2(1− x)n−kdx

]
(31)

= (k − 1)

[∫ t

s
β(x; k, n− k + 1)dx− ns

k − 1
β(x; k − 1, n− k + 1)dx

]
(32)

= (k − 1)β([s, t]; k, n− k + 1)− nsβ([s, t]; k − 1, n− k + 1) (33)
= (k − 1)ωj − nsϕj (34)

14

Now for the right integral term:[∫ t

s

(n− k)(t− x)
1− x

β(x; k, n− k + 1)dx

]
(35)

=
(n− k)n!

(k − 1)!(n− k)!

[∫ t

s

(t− x)
1− x

xk−1(1− x)n−kdx

]
(36)

=
(n− k)n!

(k − 1)!(n− k)!

[∫ t

s
xk−1(1− x)n−kdx− (1− t)

∫ t

s
xk−1(1− x)n−k−1dx

]
(37)

= (n− k)
[∫ t

s
β(x; k, n− k + 1)dx− n(1− t)

n− k)

∫ t

s
β(x; k, n− k)

]
(38)

= (n− k)β([s, t]; k, n− k + 1)− n(1− t)β([s, t]; k, n− k) (39)
= (n− k)ωj − n(1− t)ψj (40)

Putting this altogether and multiplying by ωj , we have:

ωjµj = n [ωj − sϕj − (1− t)ψj] = n [ωj − F (xj−1)ϕj − (1− F (xj))ψj] (41)

Summing together every term and simplifying yields the aggregate cost.

We have established an analytical solution for E(nT) as the sum of m terms, each of which only
depends on adjacent thresholds in x. Assuming F is the Uniform (0, 1) distribution, we can simplify
the above expression even further that allows us to take first order conditions to obtain a recursive
formula in terms of xj−1, xj , xj+1 that yields the optimal bucket selection. Moreover, this recursive
formula will be true for any value of m and we may perform a one-time inversion of the bucket
selection according to F to generalize our result to arbitrary distributions.

Theorem 4.4.1. With slight abuse of notation, let ϕ(x) and ψ(x) denote the cumulative density
function evaluated at x of the Betak−1,n−k+1 and Betak,n−k distributions respectively. Similarly,
let ϕ′(x) and ψ′(x) denote the respective derivatives at x. The bucketing x that minimizes E(nT)
satisfies the following recursion:

xj−1ϕ
′(xj)− xjϕ′(xj)− ϕ(xj)− xjψ′(xj)− ψ(xj) + ψ(xj−1) + ϕ(xj+1) + xj+1ψ

′(xj) = 0 (42)

Proof. This follows by taking the first order conditions with respect to xj of E(nT). This result
allows us to iteratively construct an approximately optimal bucketing from a guessed value of x1.

This follows by taking the first order conditions with respect to xj of E(nT). This result allows us
to iteratively construct an approximately optimal bucketing. That is, we begin by guessing a value
of x1, computing the x2 that satisfies the first order condition w.r.t. x0 and x1, then computing x3
that satisfies the next condition, so on and so forth. We can show the asymptotic rate of decrease of
E(nT) to 1 under the optimal bucketing x is exactly O(n

m).
Now that we have established some key properties of E(nT), we can provide some results regarding

some of the proposal sampling methods from earlier, namely rejection sampling, ARMS, and MCMC
sampling.

15

Figure 2: We plot the decay rate of E(nT) against optimal bucketing schemes as either n grows large
with fixed m (left) or as m grows large with fixed n (right). In the left plot, we see that bucket sizes
not strictly ω(1√

n
) do not yield E(nT) = o(n). In contrast, both bucketings of size ω(1√

n
) achieve

the desired outcome. On the plot on the right, we see that the optimal (satisfies FOC for all except
the last bucket) bucketings yield effectively the same cost. These are both noticeably better than
when forcing any of ωjµj (Inverse), µj) (Even), or ωj (Beta) to be approximately equal for all j.

Theorem 4.5. Let F̂N (x) = 1
N

∑N
i=1 1Xi≤x denote the empirical CDF. Then for N = Ω(n4m2η−1 log 1

α),
then P(|Ex(nT) − Ex̂(nT)| < η) ≥ 1 − α, where x and x̂ are the optimal bucketing and estimated
optimal bucketing under F̂ respectively.

Proof. By the DKW inequality, we have that supx∈[X1,...,Xn] P(| F (x)−F̂N (x) |> r) ≤ 2 exp(−2Nr2).
Assuming | F (x)− F̂N (x) |> r, we have that for ϵr,n,m = |Ex(nT)− Ex̂(nT)|:

ϵr,n,m ≤ n
m∑
i=1

|F (xj)ψj − (F (xj) + r)(ψj + rn)|+ |F (xj−1)ϕj − (F (xj−1) + r)(ϕj + rn)| (43)

= n|
m∑
i=1

|rϕj + r2n+ rnF (xj−1)|+ |rψj + r2n+ rnF (xj)| (44)

≤ 2n(r + r2nm+ rnm) ≤ 4rn2m (45)

Setting r = η
4n2m

in N = O(r−2 log 1
α), we obtain the desired result.

7.2 Continuous Problem

At its core, DSP requires black-box sampling from truncated distributions whereas OSSP requires
some more structure. The per sample time complexity of first method relies on E(nT) as they require
nT samples from FT per sample of Fk,n whereas the latter method depends on the complexity of
the desired distribution. We discuss methods to optimize the per sample cost under the different
methodologies for the continuous sampler. We then balance these costs with that of the discrete
sampler to obtain a reasonable choice for m. In the following few subsections, we develop both
heuristics and theory for designing optimal buckets x, as well as noting some limitations.

In DSP, we sample nT random variables from FT and simply take the kT ’th order statistic to
be our X(k,n). The difficulty lies within being able to sample from FT , which is some arbitrary,
truncated distribution. Fortunately, this problem is very well studied. The most basic of these would
be vanilla rejection sampling which only requires access to samples from F . With additional oracle
access to F , one can reduce the amount of samples required in rejection sampling via exponential

16

tilting. Alternatively, one can employ the accept-reject method, where we sample from a different
underlying distribution and reject some samples with probability proportional to the ratio of the
true and proposal densities. Following this idea, ARMS given by Gilks 1992, 1995 [3] [4], TDR given
by Hörmann 1995 [5], and tabular sampling given by Ahrens 1995 [8] perform well empirically for
generalized log-concave distributions by adaptively constructing the underlying proposal distribution.
While this is an exact sampler for log-concave F , the Metropolis correction introduces auto-correlation
between samples leading to a non-exact sampler. In a similar vein, if we do not have access to
samples from F but only oracle access to F , Markov Chain Monte Carlo (MCMC) algorithms obtain
correlated samples of the Markov Chain’s stationary distribution, which by design, is FT . While
each algorithm has its advantages and disadvantages depending on the cost of sampling versus
querying from F , the (approximate) log-concavity of FT , and the desired ϵ-TV closeness, the primary
commonality between these methods is that nT samples are required. Consequently, the expected
time complexity of this approach must scale at least with E(nT (x)) = E(nT). We will state several
useful observations and results pertaining to the behavior of E(nT) with respect to m as well as
optimal bucket construction.

7.2.1 Vanilla Rejection Sampling

The title of ’vanilla rejection sampling’ is actually a slight misnomer, as we modify it so as to not
reject all samples. In particular, if we know how many samples of X(k,n) are needed, we can sample
all of the kT , nT , BT first, and then compute the number of random variables from each bucket are
required. This has an expected cost of maxj

ωjµj

F (xj)−F (xxj−1)
= maxj

ωjµj

αj
= CRS .

Theorem 5.2. Let CRS = maxj
ωjµj

αj
, where αj = F (xj) − F (xj−1). Then, the expected number

of samples from F required to sample from FkT ,nT ,BT
is O(CRS) when using rejection sampling.

Furthermore, we have that limm→∞CRS = C∗
RS = n

n−1Beta′k−1,n−k(
k−1
n−1) under the optimal bucketing

scheme. This implies that if k = Θ(n), then C∗
RS = O(

√
n). Otherwise, C∗

RS = O(n). Moreover, the
optimal m-bucketing converges to C∗

RS at rate O(n
m).

Proof. Vanilla rejection sampling takes samples from F , rejecting all samples falling outside of BT

and accepting the first nT within this range. This method yields an expected O(
∑m

j=1
ωjµj

αj
) amount

of work per sample. Unsurprisingly, the time complexity of this method even under the optimal x
cannot be o(n) per sample, as it is even worse than just brute force sampling all n random variables
in the original problem. To improve this, we use the samples rejected for bucket Bj as accepted
samples for the appropriate bucket. Hence, the bottleneck of rejection sampling then becomes
sampling from the bucket with the largest ωjµj

αj
, yielding an expected O(maxj

ωjµj

αj
) amount of work

per sample. With this in mind, we must avoid selecting x with buckets likely to be selected (larger
ωj) with a large expected number of random variables (larger µj) and high rejection probability
(smaller αj). As µj and αj are approximately proportional in the unweighted rejection sampling
algorithm, the optimal xRS under RS would concentrate buckets heavily towards regions where
X(k,n) is most likely to fall. That is, ωj and µ2j are inversely proportional under xRS .

From our previous result, we have that ωxµx = n(ωx − F (x)ϕx − (1− F (x+ ϵ))ψx) where the
bucket of interest is [x, x+ ϵ). We first take the limit of the inside expression to obtain:

lim
ϵ→0

ωxµx
px

= n

(
lim
ϵ→0

ωx

px
− lim

ϵ→0

F (x)ϕx
px

− lim
ϵ→0

(1− F (x))ψx

px

)
(46)

17

We check the three terms separately. For the first term:

lim
ϵ→0

ωx

px
= lim

ϵ→0

βk,n−k+1(F (x+ ϵ))− βk,n−k+1(F (x))

F (x+ ϵ)− F (x)
(47)

= lim
ϵ→0

βk,n−k+1(F (x+ ϵ))− βk,n−k+1(F (x))

ϵ
· ϵ

F (x+ ϵ)− F (x)
(48)

=
β′k,n−k+1(F (x))f(x)

f(x)
(49)

= β′k,n−k+1(F (x)) (50)

For the second term:

lim
ϵ→0

F (x)ϕx
px

= F (x) lim
ϵ→0

βk−1,n−k+1(F (x+ ϵ))− βk−1,n−k+1(F (x))

F (x+ ϵ)− F (x)
(51)

= F (x)β′k−1,n−k+1(F (x)) (52)

For the final term:

lim
ϵ→0

(1− F (x+ ϵ))ψx

px
= lim

ϵ→0
(1− F (x)− F (x+ ϵ) + F (x))

ψx

px
(53)

= lim
ϵ→0

(1− F (x)) ψx

px
− lim

ϵ→0
ψx (54)

= lim
ϵ→0

(1− F (x))
βk,n−k(F (x+ ϵ))− βk,n−k(F (x))

F (x+ ϵ)− F (x)
(55)

= (1− F (x))β′k,n−k(F (x)) (56)

Now we take the derivative of each term. For the first term:

d

dx
β′k,n−k+1(F (x)) = f(x)β′′k,n−k+1(F (x)) (57)

For the second term:

d

dx
F (x)β′k−1,n−k+1(F (x)) = f(x)

(
β′k−1,n−k+1(F (x)) + F (x)β′′k−1,n−k+1(F (x))

)
(58)

For the final term:

d

dx
(1− F (x))β′k,n−k(F (x)) = f(x)

(
(1− F (x))β′′k,n−k(F (x))− β′k,n−k(F (x))

)
(59)

Now we take the derivative of the sum of the terms and set to zero:

d

dx

(
β′k,n−k+1(F (x))− F (x)β′k−1,n−k+1(F (x))− (1− F (x))β′k,n−k(F (x))

)
= 0 (60)

The solution of the above are the values of x such that f(x) = 0 or x = F−1
(
k−1
n−1

)
. Plugging in the

latter into the original limit, we obtain the desired result after some algebraic manipulation and
applying Stirling’s approximation.

To show the rate of convergence, we note that any bucketing scheme such that the maximum ωj

shrinks uniformly to 0 as m→∞ will converge to C∗
RS as the bucket containing F−1(k−1

n−1), which is

18

Figure 3: We plot the theoretical optimal rejection sampling cost C∗
RS versus m for k = Θ(n) (median)

and k ̸= Θ(n) (Min or Max) on the left. We see that the optimal cost for each is approximately on
the order of

√
n and n respectively. On the right, we show the rate of convergence to the theoretically

optimal cost for n = 45 and k corresponding to the median as a function of m. We note that
under the Even and Beta bucketing procedures, corresponding to equal αj and ωj terms respectively,
we achieve a linear convergence rate linear in m, whereas under the optimal bucketing, we obtain
super-linear convergence.

the mode of Fk,n, becomes the bottleneck. One such bucketing can be obtained by setting x such
that ωj = 1

m for all j. As µj and αj are approximately proportional with µj ≈ nαj , we obtain
maxj

ωjµj

αj
≈ n

m , yielding a convergence rate of O(n
m) for the beta equal bucketing and hence, also

the optimal bucketing.

With this established, then we have an exact expression for CRS . Furthermore, since each ωjµj

pj
is

only dependent on xj and xj−1, can find the xj for a fixed xj−1 such that ωjµj

pj
is equal to the desired

cost CRS . For continuous F , this is a relatively straightforward optimization problem. However,
there is a limit to the performance of rejection sampling as a function of n and k, even as m grows
large.

As the per-sample-cost is a maximum over the relative contributions ωjµj

αj
, the optimal bucketing

can be obtained by setting the value of CRS and computing x such that ωjµj

αj
= CRS for all j. The

requirement for k to scale linearly with n in order to achieve sub-linear cost follows from expanding
C∗
RS and using Stirling’s approximation. Conversely, this also implies that unless k = Θ(n), then we

cannot obtain a sub-linear per-sample cost.

7.2.2 Conditional Sampling

To remedy this, instead of sampling directly from F and selectively accepting or rejecting depending
on the location of the proposal, we can change the underlying sampling distribution to G and reject
samples according to the ratio Z FT (x)

G(x) for some normalizing constant Z and proposal x. A commonly
used method is exponential tilting. It is, however, not always this straightforward to choose G
in the accept-reject method to improve the acceptance probability. Fortunately, for log-concave
fT , ARMS can adaptively construct this underlying sampling distribution such that we accept
all samples. Fortunately, as m grows large and the buckets grow smaller, even if FT is not itself
log-concave, FT will approach the simple, log-concave uniform distribution. This allows for a low
rejection rate for an expected per sample cost of effectively O(1). In practice, this rejection rate
will be a decreasing function of M , the number of pre-computed construction points. The exact

19

computation of these construction points can be done optimally (Hörmann 1995 [5]) or in an online
fashion via adaptive rejection sampling. The expected cost in terms of the number of samples
required from F then scales linearly w.r.t. to the total number of samples from FT required, namely
E(nT). Optimizing the bucket selection is equivalent to optimizing E(nT) w.r.t. x for which we gave
the first order conditions earlier this section. Combining this and the former results, the asymptotic
cost of this method w.r.t. m is O(n

m). Balancing this out with the discrete sampler cost, we obtain
O(H(ω) + logE(nT) + E(nT)) = O(H(ω) + E(nT)) = O(logm+ n

m). This will achieve sub-linear
performance in n and k for any m ∈ O(Poly(n)). For example, simply setting m to be n or some
polynomial function of n, we can obtain O(log n) cost. We can extend the previous discussion of
log-concavity to MCMC sampling and initialization, as log-concavity has implies efficient mixing
and sampling (Mangoubi 2017 [9], Dwivedi and Chen 2018 [10], Dwivedi 2019 [10]).

Theorem 5.3. (Dwivedi 2019). A function f is said to be α-strongly log-concave for α > 0 if:

log f(θx+ (1− θ)y) ≥ θ log f(x) + (1− θ) log f(y)− 1

2
αθ(1− θ)||x− y||22 (61)

Then, for α-strongly log concave and γ-smooth distribution µ, the Metropolis Adjusted Hamiltonian
Monte Carlo (HMC) has a mixing time of O(γα log ϵ−1) required to achieve ||µt − µ||TV ≤ ϵ. In
order to preserve the ϵ-TV closeness under auto-correlation, we must discard O(γα log ϵ−1) accepted
proposals.

Analogues for the above result exist for other MCMC algorithms, such as the Metropolis Adjusted
Langevin Algorithm (MALA). At a high level, assuming highly smooth and log-concave distributions,
several MCMC methods have been proven to mix quickly and and require few discards. We note
that the initial distribution choice of µ0 also affects the mixing rate, albeit by a constant factor. A
reasonable choice for µ0 would simply be the uniform distribution, hence faster mixing when FT is
closer to uniform. One important flaw is that as MCMC is not an exact method, errors will accumulate
FkT ,nT ,BT

as opposed to FT . That is, the error of FkT ,nT ,BT
(x) ∝ FT (x)

kT−1(1− FT (x))
nT−kT is an

order of nT larger than that of FT , As such, in order to obtain ϵ-TV closeness of F̂k,n, we need that
each F̂kT ,nT ,BT

is ϵnT -TV close to FkT ,nT ,BT
. Coupled with the auto-correlation discards, we have

the following cost analysis:

Theorem 5.4. Let F be a α-strongly log concave and γ-smooth distribution. Then, the number of
samples from F required to sample from FkT ,nT ,BT

via HMC under the direct sampling paradigm is
O(γα log ϵ−1E(nT)2).

Proof. We require γ
α log ϵ−1n2T queries from F due to the compounding error and auto-correlation

correction. Computing the expectation of this term is complicated slightly by the E(n2T) term.
Nonetheless, we have that E(n2T) = E(nT)2 + Var(nT). If we can show that Var(nT) = O(n2T), then

20

we have the desired result. To do this, we follow the same expansion as in the proof of Theorem 4.4.

Var(nT) =
m∑
j=1

ωjVar(nT |BT = Bj) (62)

=
m∑
j=1

∫ xj+1

xj−1

Var(1 + Binom
k−1,

F (x)−F (xj−1)

F (x)

+ Binom
n−k,

F (xj)−F (x)

1−F (x))

)dFk,n(x) (63)

=
m∑
j=1

∫ xj+1

xj−1

[(k − 1)
F (x)− F (xj−1)

F (x)

F (xj−1)

F (x)
+ (n− k)F (xj+1)− F (x)

1− F (x)
1− F (xj+1)

1− F (x)
]dFk,n(x)

(64)

≤
m∑
j=1

∫ xj+1

xj−1

[(k − 1)
F (x)− F (xj−1)

F (x)
+ (n− k)F (xj+1)− F (x)

1− F (x)
]dFk,n(x) (65)

≤
m∑
j=1

ωjµj = E(nT) (66)

When F satisfies α-strong log-concavity and γ-smoothness, optimizing this quantity is the same
as optimizing over E(nT) and hence obtains asymptotic behavior of O(γα log ϵ−1 n2

m2). When F does
not satisfy these properties, the theoretical run-time is unbounded. If we consider only the buckets
that satisfy these conditions, then we achieve the above performance. In general, the other methods
are preferred, due to the error propagation and sample auto-correlation in MCMC requiring a large
number of calls to F . Having described some possible algorithms to sample from FT and their
properties, we now present methods to approximate inverse F−1

T .

7.2.3 BITS

We can avoid having to generate multiple samples from FT if we could instead sample from FkT ,nT ,BT

directly. Having access to F−1 would trivialize this problem, however, evaluating the inverse globally
is difficult. There are several methods to estimate and invert functions locally, such as the root-
finding algorithms, inverse spline or polynomial interpolation, or Taylor series inversion followed
by series reversion. We restrict our attention to the family of root-finding algorithms as the total
variation error of the other methods are not guaranteed to converge to 0 for arbitrary, continuous
FT . Our goal in with these root-finding algorithms is to compute local inversions F−1

T with buckets
selected to minimize the number of computations required to query F−1

T . In particular, we let
B ∼ Beta(kT , nT −kT +1) and define g(x) = F (x)−F (B). Assuming that F is weakly increasing, we
have a unique root xB = F−1(B) = inf{x | F (x) ≥ B} that we will approximate with x̂B that is close
enough to xB to guarantee ϵ-TV closeness. Note that unlike the error of non-exact sampling in direct
algorithms such as MCMC, the total variation error in root-finding does not blow up exponentially
with respect to nT –a major advantage of the inversion method. Unfortunately, root-finding algorithm
performance is commonly written in terms of the approximation error |x̂B − xB| as opposed to the
total variation error–where convergence in the former does not imply convergence in the latter, e.g.
empirical CDF’s. The implication holds, though, when coupled with Lipschitz continuity of f .

Theorem 5.5. Let F be an continuous density function with L-Lipschitz derivative, f . Further-
more, let XB ∼ F and RF be a root-finding algorithm that returns an approximation RF (XB)
such that |RF (XB) − XB| < ϵ

2L . Let X̂B ≡ RF (XB) + UL,ϵ ∼ F̂ denote the distribution of the

21

Uniform(− ϵ
2L ,

ϵ
2L)-perturbed approximations of XB ∼ F Then, F and F̂ are ϵ-TV close and Fk,n

and F̂k,n are nϵ-TV close.

Proof. Because RF must return RF (XB) that is within ϵ
2L of the true root XB, and X̂B is simply

RF (XB) perturbed by Uniform(− ϵ
2L ,

ϵ
2L) noise, then the maximum TV-distance between F̂ and F

can be upper bounded as a function of L and ϵ. More specifically:

δTV (f, f̂) =

∫ ∞

−∞
|f(x)− f̂(x)|dx (67)

=

∫ ∞

−∞
|f(x)− |{x′ : |RF (x′)− x| < ϵ

2L
}|−1

∫
x′:|RF (x′)−x|< ϵ

2L

f(x′)dx′|dx (68)

=

∫ ∞

−∞
|{x′ : |RF (x′)− x| < ϵ

2L
}|−1

∫
x′:|RF (x′)−x|< ϵ

2L

|f(x)− f(x′)|dx′dx (69)

≤
∫ ∞

−∞
|{x′ : |RF (x′)− x| < ϵ

2L
}|−1

∫
x′:|RF (x′)−x|< ϵ

2L

L|x− x′|dx′dx (70)

≤
∫ ∞

−∞
|{x′ : |RF (x′)− x| < ϵ

2L
}|−1

∫
x′:|RF (x′)−x|< ϵ

2L

L| ϵ
L
|dx′dx (71)

= ϵ

∫ ∞

−∞
|{x′ : |RF (x′)− x| < ϵ

2L
}|−1

∫
x′:|RF (x′)−x|< ϵ

2L

dx′|dx = ϵ (72)

The second inequality follows from ϵ
2L closeness of RF (x′) and x′ and the integration set condition.

As a direct consequence, any RF that converges super-linearly in approximation error must also
converge super-linearly in total variation distance. There are fortunately several fast root-finding
algorithms.

Definition 3. Root-finding algorithm RF successively approximates the root xB of function F with
guesses {x̂t}t=0,1,... with corresponding absolute errors {δt}t=0,1,.... RF is said to have convergence
rate M and convergence order q if limt→∞

δt+1

δqt
=M .

The most basic such algorithm is the bisection method, which guarantees linear convergence order
only requiring continuity of F . The secant method, the closely related Newton-Raphson method
(which also requires access to f), the Illinois algorithm, and several hybrid methods such as the
popular Brent’s method, Ridder’s method, or the ITP method, all achieve super-linear convergence
order under a sufficiently close initial guess of the root xB. In many of these methods, the rate of
convergence M is defined as M = 1

2 supx∈I0 |
f ′(x)
f(x) |, where I0 = [xB − δ0, xB + δ0]. The dependence

on the local log Lipschitz constant f ′(x)
f(x) —which can be seen as a sort of measure of non-linearity

actually appears in the rate of convergence constant for all of the aforementioned methods. If the
initial guess x̂0 is too far away from xB , then the iterates may initially converge very slowly towards
xB , if not diverge. Our choice of bucketing can mitigate this slow convergence by allowing for a more
precise initial guess. As FT tends towards a uniform distribution as m increases and BT shrinks, it
is reasonable to approximate FT with a linear function. By taking the first order conditions of the
inverse CDF, we can obtain an upper bound on the horizontal distance between a twice differential
FT and its linear approximation.

22

Figure 4: On the left, we show the dependence on the run-time of our root finding algorithm on
|f

′(x)
f(x) | by plotting the average number of function calls to invert u ∼ Unif(0, 1) assuming a Beta(i, i)

distribution against Ex∼Beta(i,i)(|
f ′(x)
f(x) |) for varying values of i. On the right, we show MCMC mixing

rates for Beta distributions with varying parameters, using 104 separately instantiated Markov chains.
When both parameters are less than 1, this corresponds to a non-log concave distribution, hence
the seeming non-convergence for Beta(0.25, 0.25) and Beta(0.5, 0.5). Conversely, both Beta(2, 2)
and Beta(4, 4) converge rapidly owing to being log-concave. The Beta(1, 1) distribution is already
well mixed as the initial proposal distribution was uniform and the Beta(1, 1) distribution is itself
uniform. This last case shows that using a Gaussian KDE using samples from the exact distribution
will still contain error.

Theorem 5.6. The maximum horizontal error between xB and the linear approximation of F inside
bucket Bj has the following upper bound:

(F (xj)− F (xj−1))
2

8
sup

F (xj−1)≤y≤F (xj)
|(F−1)′′(y)| = (F (xj)− F (xj−1))

2

8
sup
x∈Bj

| f
′(x)

f(x)3
|= δ0 (73)

As the initial guess for any xB in Bj will fall within Bj , we can use the convergence order of root-
finding algorithm RT, the initial error δ0, and the worst case convergence rateMj = supx∈Bj

1
2 |

f ′(x)
f(x) |

to determine an upper bound on the expected number of iterations tj required to obtain ϵ-TV
closeness.

Theorem 5.7. Let tj denote the expected number of iterations required to evaluate F−1 conditioned
within Bj for some n and k such that the distribution of the approximated root is ϵ-TV close to FT .
Let q > 1, Mj = 1

2 supx∈Bj

f ′(x)
f(x) , and δ0 denote the upper bound on the initial error under linear

approximation. If δ0 < M
(q−1)−1

j , then we have:

tj ≤ max

0,
1

log q
log

1 +
log ϵ

2L − log δ0

− logM
(q−1)−1

j − log δ0

 = tj (74)

Proof. We first rewrite tj analytically: tj ≈ mint{δt : δt < ϵ
2L}. Let xB be some point within Bj

23

with corresponding initial guess x̂B and convergence constant MB. With some algebra, we obtain:

δtj =MBδ
q
tj−1 = . . . ≈M

∑tj−1

i=1 qi

B δq
t

0 (75)

Here, the approximate equality is due to the fact that the rate of convergence is only given by the
limiting behavior. Replacing δtj with ϵ

2L , the required tolerance level, we take the log of both sides
and obtain:

log
ϵ

2L
= (

tj−1∑
i=1

qi) logMB + qtj log δ0 → (76)

log
ϵ

2L
− log δ0 =

qtj − 1

q − 1
logMB + (qtj − 1) log δ0 → (77)

log
ϵ

2L
− log δ0 = (qtj − 1)(logM

(q−1)−1

B + log δ0)→ (78)

logq

(
1 +

log ϵ
2L − log δ0

− logM
(q−1)−1

B − log δ0

)
≥ tj (79)

Here, the inequality follows for 1 < q < 2, which is true for most root finding algorithms such as
the Illinois algorithm. We take the max of 0 and this upper bound, as if the initial error is smaller
than ϵ, then we require 0 iterations to achieve sufficient precision. Note that this also requires that
logM

(q−1)−1

B + log δ0 needs to be positive, meaning the initial estimate δ0 < (q − 1)−1. As tj is
increasing in δ0 and MB , we replace them with the respective upper bounds, δ0 and Mj to generalize
this result to hold for every xB ∈ Bj .

Our upper bound on tj increases in d, q, Mj , and δ0, which agrees with the intuition that
additional precision, worse convergence order and rate, and worse initial estimate negatively influence
run-time. The per sample cost of this method is then given by CInv = O(

∑m
j=1 ωjtj) = O(

∑m
j=1 ωjtj).

As a final remark, we may linearly interpolate to upper bound δ0—or use any other upper bounding
technique on δ0—allowing us to replace δ0 with its upper bound δ0. This upper bound can be, and is
often, quite loose, even for relatively simple distributions (see Figure 5). Furthermore, the conditions
are overly restrictive as many methods exist that guarantee convergence despite a poor initial guess
(where δ0 > M1−q

j), such as the family of bracketing and regula falsi methods.
In the local inversion of FT via root finding approach, we are interested in the quantity tj =∑m

j=1 ωjtj . Here, tj serves as an upper bound on the expected number of iterations for the root
finding algorithm to converge to F−1

T (B) for B ∼ Beta(kT , nT −kT +1). As tj itself is upper bounded
by a function of xj−1, xj , and d, our selection of x strongly influences our upper bound on the per
sample cost. We show heuristic methods to optimize the selection of x and then derive bounds on
the optimal sampling efficiency as a function of the complexity of F .

Our goal in this section is to devise a bucketing scheme to minimize the expected number of
iterations or function calls in our root finding process given n, k, and F with respect to the bucketing
xRF . However, this objective of minimizing E(

∑m
j=1 ωjtj) =

∑m
j=1 ωjtj is difficult for several reasons.

Firstly, we have no actual expression for representing tj in terms of xj−1, xj , nT , kT , and F as we
only have an upper bound tj on tj as discussed in the previous section. By replacing this expectation
with worst case, we disregard the distribution of the root xB ∼ βnT ,nT−kT+1 and also the distribution
of nT and kT within BT themselves. Secondly, the expression for tj is rather complex. Recall that

24

Figure 5: On the left, we plot the number of function calls required to invert a polynomial CDF
such that F (x) = U where U ∼ Unif(0, 1). This graph illustrates benefit of partitioning the sample
space into smaller, more linear buckets, as for highly non-linear F—corresponding to larger i and
smaller r—the number of function calls increases, e.g. the rapid increase in both tj and tj for smaller
values when i < 1 as the initial error δ0 exceeds that of logM1−q

J . The sudden dips at i = 1 and
i = 2 are due to Brent’s method’s secant method and inverse quadratic interpolation methods being
highly efficient for these two parameterizations respectively. Because of this, we note that different
root-finding methods will have varying performances depending on F ; though here, and henceforth,
we will use Brent’s method. On the right, using the standard normal distribution, we show that
some methods (Brent’s) do not require δ0 > M1−q

j . In contrast, tj is infinite where logMj exceeds
log δq−1

0 , where 1 < q ≤ 2. This plot was generated by sliding buckets of 5 different sizes over R+.
As Mj =

1
2 |

f ′(x)
f(x) | =

x
2 for the standard normal, Mj is simply half the location of the right bucket

endpoint.

25

tj ≤ tj = logq

(
1− − log ϵ

2L
+log δ0

logMj+log δ0

)
where Mj and δ0 are themselves are a function of xj−1, xj , and

F . More specifically, Mj is dependent on the root finding algorithm and is computationally difficult
to obtain, even for the relatively simple Newton’s method. Similarly, δ0 depends on the method
used to obtain the initial root estimate. Lastly, even if tj was simple to compute, we are still faced
with a complex optimization problem due to the ω weighting, similar to the MCMC method.

Because of these difficulties, it may be easier to resort to heuristic optimization methods. Using
what we know of tj , it is reasonable to expect the expected run-time tj to also be increasing in d, δ0,
Mj , and q. As d is the required precision in our inversion estimates, it is natural to expect both tj
and tj to scale positively with d. Similarly, the initial guess δ0 under linear interpolation is upper
bounded as a function that decreases with xj−1 and f and increases with xj and f ′. Consequently,
smaller Bj , larger slope f and smaller non-linearity in |f ′| from within Bj improve δ0 and therefore,
improve tj . The convergence rate Mj is dependent on the root-finding method, though generally
depends on the quantity maxx∈Bj |

f ′(x)
f(x) |. Identical to δ0, both Mj and tj improve under smaller Bj ,

larger slope f and smaller non-linearity in |f ′|. The convergence order q depends on the root-finding
method. In one dimension, most modern root-finding algorithms guarantee super-linear convergence
rate q > 1 under well behaved (twice continuously differentiable) F .

We can conclude from this that xInv concentrates where F is highly non-linear, or equivalently,
where |f

′(x)
f(x) | is large. This is in contrast to the direct sampling methods, where the optimal bucketing

was concentrated only where Fk,n is steep. The other advantage in this optimization procedure
is that n and k do not affect any of δ0,Mj , or q. Hence, they do not impact the upper bound on
tj—though they will impact tj—unlike in the RS and MCMC methods where µj depended on n
and k. We will see that this near independence on n and k will allow the inversion sampler to
complement the direct sampling methods by running the inversion sampler in buckets where Fk,n is
large but F is nearly linear. Unfortunately, we cannot obtain a concrete optimization method with
just these remarks. However, we can instead plot the location of the buckets to see whether a bucket
selection procedure is performing as expected. In all experiments, we will resort to using a similar
strategy as in the rejection sampler by constructing buckets with ωj t̂j = CInv, where t̂j is a Monte
Carlo estimate of the number of inversion steps required to invert a Uniform(0, 1) random variable
w.r.t. the conditional distribution of F in bucket Bj . In conjunction with the sub-optimality of
the optimization procedure of constructing buckets to have even contributions, our method will
not be optimal. Despite this, we expect that as m grows large (when CInv approaches 0), that this
method will produce reasonable xInv. The relationship between E(tj) under either this heuristically
optimized or the true optimal xInv is difficult to characterize analytically. We know that tj itself
is proportional to log log ϵ

2L . The impact of the Mj term is complicated and strongly depends on
F ; in particular, the log-Lipschitz continuity constant L′ of f yields an upper bound of L′ for Mj .
Similarly, the δ0 term will approach as m → ∞ and the bucket size shrinks where FT becomes
approximately linear.

7.2.4 Using Empirical CDF F̂N

Theorem 5.1. Let F̂N denote the empirical distribution of F . Then, for N = Ω(n2ϵ−1 log 1
α), we

have P(δTV (fk,n, f̂
N
k,n) < ϵ) ≥ 1− α.

Proof. We know that P(supx |F (x)− F̂N (x)| > r) ≤ 2 exp(−2Nr2) by the DKW inequality. Using
F̂N
k,n(x) =

n!
(k−1)!(n−k)!f(x)F̂

N
k,n(x)

k−1(1− F̂N
k,n(x))

n−k, a = F (x)k−1, ra = (F (x)+r)k−1−a, b = (1−
F (x))n−k, rb = (1−F (x)− ϵ)n−k− b, and χ′(x) = Beta′k−1,n−k(F (x)), we can rewrite δTV (fk,n, f̂

N
k,n)

26

Figure 6: We plot the number of iterations required for convergence in BITS by varying several of
the factors that impact tj . With the same experimental setup as the second plot in Figure 5 to
analyze the empirical effect of Mj on tj , we used the standard normal distribution for fixed d and
varying bucket size or vice versa.

as follows:

δTV (fk,n, f̂
N
k,n) (80)

=
n!

(k − 1)!(n− k)!

∫ ∞

−∞
f(x)|Fk,n(x)

k−1(1− Fk,n(x))
n−k − F̂N

k,n(x)
k−1(1− F̂N

k,n(x))
n−k|dx (81)

≤ n!

(k − 1)!(n− k)!

∫ ∞

−∞
f(x)|(a+ ra)(b+ rb)− ab|dx (82)

≤ n!

(k − 1)!(n− k)!

∫ ∞

−∞
f(x)|arb + bra + rarb|dx (83)

≤
∫ ∞

−∞
|rnϕ′(x) + rnψ′(x) + r2n2χ′(x)|dx (84)

≤ 2rn+ r2n2 (85)

Setting this equal to ϵ, we require r = ϵ
n . Plugging this into our DKW bounds with a desired

probability of α, we obtain N = Ω(n2ϵ−1 log 1
α).

As for the BITS sampler under use of the empirical distribution, the generalization is straightfor-
ward. As we have P(δKS(F, F̂N) > ζ) ≤ 2 exp(−2Nζ2) by the DKW inequality, we equivalent obtain
high probability ζ-horizontal between inverse CDFs F−1 and F̂−1

N . With ζ ≤ ϵ
4L , appropriately

selected N to achieve the desired probability guarantee, and increasing the BITS root-finding protocol
precision by a factor of 2, BITS returns samples from F̃k,n with high probability.

7.2.5 Heterogeneous Case

The computation of the ω and pnT ,kT |BT
tables can be computed using dynamic programming

algorithms to evaluate (joint) order statistic CDF’s (see [13]). Using Bayes rule for the weighted
random sampling weights P(Xi ∈ Bj | X(k,n) ∈ BT = Bj , nT = nT , kT = kT):

P(Xi ∈ Bj | X(k,n) ∈ BT = Bj , nT = n′, kT = k′) (86)

=
P(nT = n′, kT = k′ | Xi ∈ Bj , BT = Bj)P(nT = n′, kT = k′ | BT = Bj)

P(Xi ∈ Bj | BT = Bj)
(87)

27

The denominator is simply Fi(xj) − Fi(xj−1) and right term in the numerator is stored the pre-
computed table pkT ,nT |BT=Bj

. The first term in the numerator can be simplified using the indepen-
dence assumption to P(n−i

T = n′ − 1, k−i
T = k′ | BT = Bj). This is the probability that among all

variables other than i, there are n′ − 1 variables in BT and k + k′ variables to the left. This can be
computed as a straightforward function of Fi(xj−1) and three entries in pkT ,nT |BT=Bj

.

7.3 Closing Remarks

We have generalized existing order statistic samplers to settings beyond those assumed in literature.
Aside from the stated primary advantages of our approach, there are also several niche benefits of
our approach, such as DSP methods allowing the sampling of nearby order statistics or the usage
of the empirical CDF to significantly reduce the computational burden of the inversion method
given by Morrison 2019 [1]. There are also several interesting open questions and subtleties in many
of our results and proofs—for example, it is unknown what assumptions on F are necessary and
sufficient in order to guarantee GLC fk,n, in both the i.i.d. and heterogeneous settings. Similarly,
much of the MCMC literature is only recently beginning to characterize the most general settings
under which sampling is efficient. For these, we refer the reader to the papers in our references
Additionally, it may be possible to generalize the heterogeneous version of our algorithm to handle
bounded dependent random variables with a simple dependency structure—e.g. Markov chains. In
particular, if we assume bounded differences between successive random variables, such is the case
in many real world processes such as waiting/computational queues, XT will likely be comprised
of a small number of clusters of successive random variables. Each of these clusters will be easily
to sample from by running the process. The key difficulty in this approach would be sampling the
process at an entry point given the value of the last exit point without having to sample all values
in between. Equally challenging is sampling from the process conditional on the values of nT and
kT . We leave these questions and generalizations for future work.

References

[1] T. Morrison and S. Pinkney, “Generating random samples from non-identical truncated order
statistics,” 2019. [Online]. Available: https://arxiv.org/abs/1905.04092

[2] L. Devroye, Non-Uniform Random Variate Generation. New York, NY: Springer New York,
1986.

[3] W. R. Gilks and P. Wild, “Adaptive rejection sampling for gibbs sampling,” Journal of the
Royal Statistical Society. Series C (Applied Statistics), vol. 41, no. 2, pp. 337–348, 1992.

[4] W. R. Gilks, N. G. Best, and K. K. C. Tan, “Adaptive rejection metropolis sampling within
gibbs sampling,” Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 44,
no. 4, pp. 455–472, 1995.

[5] W. Hörmann, “A rejection technique for sampling from t-concave distributions,” ACM Trans.
Math. Softw., vol. 21, no. 2, p. 182–193, 1995.

[6] M. Evans and T. Swartz, “Random variable generation using concavity properties of transformed
densities,” Journal of Computational and Graphical Statistics, vol. 7, no. 4, pp. 514–528, 1998.

[7] D. Görür and Y. W. Teh, “Concave-convex adaptive rejection sampling,” Journal of Computa-
tional and Graphical Statistics, vol. 20, no. 3, pp. 670–691, 2011.

28

https://arxiv.org/abs/1905.04092

[8] J. H. Ahrens, “A one-table method for sampling from continuous and discrete distributions,”
Computing, vol. 54, no. 2, pp. 127–146, 1995.

[9] O. Mangoubi and A. Smith, “Rapid mixing of hamiltonian monte carlo on strongly log-concave
distributions,” 2017. [Online]. Available: https://arxiv.org/abs/1708.07114

[10] R. Dwivedi, Y. Chen, M. J. Wainwright, and B. Yu, “Log-concave sampling: Metropolis-hastings
algorithms are fast!” in Conference On Learning Theory, COLT 2018, Stockholm,
Sweden, 6-9 July 2018, ser. Proceedings of Machine Learning Research, S. Bubeck,
V. Perchet, and P. Rigollet, Eds., vol. 75. PMLR, 2018, pp. 793–797. [Online]. Available:
http://proceedings.mlr.press/v75/dwivedi18a.html

[11] Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu, “Fast mixing of metropolized hamiltonian
monte carlo: Benefits of multi-step gradients,” J. Mach. Learn. Res., vol. 21, no. 1, 2020.

[12] W. Hörmann and G. Derflinger, “Fast generation of order statistics,” ACM Trans. Model.
Comput. Simul., vol. 12, no. 2, p. 83–93, 2002.

[13] R. Galgana, C. Shi, A. Greenwald, and T. Oyakawa, “A dynamic program for computing the
joint cumulative distribution function of order statistics,” in Proceedings of the 2021 SIAM
Conference on Applied and Computational Discrete Algorithms, ACDA 2021, Virtual Conference,
July 19-21, 2021, M. Bender, J. Gilbert, B. Hendrickson, and B. D. Sullivan, Eds. SIAM, 2021,
pp. 160–170.

29

https://arxiv.org/abs/1708.07114
http://proceedings.mlr.press/v75/dwivedi18a.html

	Introduction
	Our Contributions

	Related Work
	Overview
	Solution Overview

	Discrete Sampler
	Discrete Problem Solution
	Initialization Complexity Analysis
	Sampling Complexity Analysis
	Cost of Computing a Bucketing

	Continuous Problem
	Approximate Continuous Sampling with Probabilistic Guarantees
	Balancing with the Discrete Sampler
	Extension to Heterogeneous Random Variables
	Heterogeneous Discrete Sampler
	Heterogeneous Continuous Sampler

	Experiments

	Conclusion
	Appendix
	Discrete Problem
	Continuous Problem
	Vanilla Rejection Sampling
	Conditional Sampling
	BITS
	Using Empirical CDF N
	Heterogeneous Case

	Closing Remarks

